• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Imprinted Polymer-Based Guided Mode Resonance Grating Strain Sensors

    Thumbnail
    View/Open
    De Coensel431532-Published.pdf (1.200Mb)
    Author(s)
    Mattelin, Marie-Aline
    Missinne, Jeroen
    De Coensel, Bert
    Van Steenberge, Geert
    Griffith University Author(s)
    De Coensel, Bert
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    Optical sensors based on guided mode resonance (GMR) realized in polymers are promising candidates for sensitive and cost effective strain sensors. The benefit of GMR grating sensors is the non-contact, easy optical read-out with large working distance, avoiding costly alignment and packaging procedures. The GMR gratings with resonance around 850–900 nm are fabricated using electron beam lithography and replicated using a soft stamp based imprinting technique on 175 µm-thick foils to make them suitable for optical strain sensing. For the strain measurements, foils are realized with both GMR gratings and waveguides with Bragg ...
    View more >
    Optical sensors based on guided mode resonance (GMR) realized in polymers are promising candidates for sensitive and cost effective strain sensors. The benefit of GMR grating sensors is the non-contact, easy optical read-out with large working distance, avoiding costly alignment and packaging procedures. The GMR gratings with resonance around 850–900 nm are fabricated using electron beam lithography and replicated using a soft stamp based imprinting technique on 175 µm-thick foils to make them suitable for optical strain sensing. For the strain measurements, foils are realized with both GMR gratings and waveguides with Bragg gratings. The latter are used as reference sensors and allow extracting the absolute strain sensitivity of the GMR sensor foils. Following this method, it is shown that GMR gratings have an absolute strain sensitivity of 1.02 ± 0.05 pm/µɛ at 870 nm.
    View less >
    Journal Title
    Sensors
    Volume
    20
    Issue
    11
    DOI
    https://doi.org/10.3390/s20113221
    Copyright Statement
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    Subject
    Analytical Chemistry
    Distributed Computing
    Electrical and Electronic Engineering
    Environmental Science and Management
    Ecology
    Science & Technology
    Physical Sciences
    Chemistry, Analytical
    Publication URI
    http://hdl.handle.net/10072/397826
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander