• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Effectiveness of the Early Response to COVID-19: Data Analysis and Modelling

    Thumbnail
    View/Open
    Bertone432097-Published.pdf (8.854Mb)
    Author(s)
    Bertone, Edoardo
    Juncal, Martin Jason Luna
    Umeno, Rafaela Keiko Prado
    Peixoto, Douglas Alves
    Khoi, Nguyen
    Sahin, Oz
    Griffith University Author(s)
    Sahin, Oz
    Bertone, Edoardo
    Luna Juncal, Martin J.
    Nguyen, Khoi A.
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    Governments around the world have introduced a number of stringent policies to try to contain COVID-19 outbreaks, but the relative importance of such measures, in comparison to the community response to these restrictions, the amount of testing conducted, and the interconnections between them, is not well understood yet. In this study, data were collected from numerous online sources, pre-processed and analysed, and a number of Bayesian Network models were developed, in an attempt to unpack such complexity. Results show that early, high-volume testing was the most crucial factor in successfully monitoring and controlling the ...
    View more >
    Governments around the world have introduced a number of stringent policies to try to contain COVID-19 outbreaks, but the relative importance of such measures, in comparison to the community response to these restrictions, the amount of testing conducted, and the interconnections between them, is not well understood yet. In this study, data were collected from numerous online sources, pre-processed and analysed, and a number of Bayesian Network models were developed, in an attempt to unpack such complexity. Results show that early, high-volume testing was the most crucial factor in successfully monitoring and controlling the outbreaks; when testing was low, early government and community responses were found to be both critical in predicting how rapidly cases and deaths grew in the first weeks of the outbreak. Results also highlight that in countries with low early test numbers, the undiagnosed cases could have been up to five times higher than the officially diagnosed cases. The conducted analysis and developed models can be refined in the future with more data and variables, to understand/model potential second waves of contagions.
    View less >
    Journal Title
    Systems
    Volume
    8
    Issue
    2
    DOI
    https://doi.org/10.3390/systems8020021
    Copyright Statement
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    Subject
    Environmental Sciences
    Artificial Intelligence and Image Processing
    Information Systems
    Computer Software
    Social Sciences
    Social Sciences, Interdisciplinary
    Social Sciences - Other Topics
    Bayesian Networks
    COVID-19
    Publication URI
    http://hdl.handle.net/10072/397829
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander