• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • The anti-tumor agent, Dp44mT, promotes nuclear translocation of TFEB via inhibition of the AMPK-MTORC1 axis

    Thumbnail
    View/Open
    Embargoed until: 2021-09-17
    File version
    Accepted Manuscript (AM)
    Author(s)
    Krishan, S
    Sahni, S
    Richardson, DR
    Griffith University Author(s)
    Richardson, Des R.
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    Di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) and its analogues are potent anti-cancer agents through their ability to target lysosomes. Considering this, it was important to understand the mechanisms involved in the Dp44mT-mediated induction of autophagy and the role of 5'-adenosine monophosphate-activated protein kinase (AMPK) as a critical autophagic regulator. As such, this investigation examined AMPK's role in the regulation of the transcription factor EB (TFEB), which transcribes genes involved in autophagy and lysosome biosynthesis. For the first time, this study demonstrated that Dp44mT induces ...
    View more >
    Di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) and its analogues are potent anti-cancer agents through their ability to target lysosomes. Considering this, it was important to understand the mechanisms involved in the Dp44mT-mediated induction of autophagy and the role of 5'-adenosine monophosphate-activated protein kinase (AMPK) as a critical autophagic regulator. As such, this investigation examined AMPK's role in the regulation of the transcription factor EB (TFEB), which transcribes genes involved in autophagy and lysosome biosynthesis. For the first time, this study demonstrated that Dp44mT induces translocation of TFEB to the nucleus. Furthermore, Dp44mT-mediated nuclear translocation of TFEB was AMPK-dependent. Considering that: (1) the mammalian target of rapamycin complex 1 (mTORC1) plays an important role in the regulation of TFEB; and (2) that AMPK is a known regulator of mTORC1, this study also elucidated the mechanisms through which Dp44mT regulates nuclear translocation of TFEB via AMPK. Silencing AMPK led to increased mTOR phosphorylation, that activates mTORC1. Since Dp44mT inhibits mTORC1 in an AMPK-dependent manner through raptor phosphorylation, Dp44mT is demonstrated to regulate TFEB translocation through dual mechanisms: AMPK activation, which inhibits mTOR, and inhibition of mTORC1 via phosphorylation of raptor. Collectively, Dp44mT-mediated activation of AMPK plays a crucial role in lysosomal biogenesis and TFEB function. As Dp44mT potently chelates copper and iron that are crucial for tumor growth, these studies provide insight into the regulatory mechanisms involved in intracellular clearance and energy metabolism that occur upon alterations in metal ion homeostasis.
    View less >
    Journal Title
    Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease
    DOI
    https://doi.org/10.1016/j.bbadis.2020.165970
    Copyright Statement
    © 2020 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
    Subject
    Biochemistry and Cell Biology
    Medical Biochemistry and Metabolomics
    Clinical Sciences
    AMPK
    Anti-cancer agent
    Dp44mT
    Molecular pharmacology
    Molecular target
    Publication URI
    http://hdl.handle.net/10072/397843
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander