• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Substrate and inhibitor specificities differ between human cytosolic and mitochondrial thioredoxin reductases: Implications for development of specific inhibitors

    Author(s)
    Rackham, Oliver
    Shearwood, Anne-Marie J
    Thyer, Ross
    McNamara, Elyshia
    Davies, Stefan MK
    Callus, Bernard A
    Miranda-Vizuete, Antonio
    Berners-Price, Susan J
    Cheng, Qing
    Arner, Elias SJ
    Filipovska, Aleksandra
    Griffith University Author(s)
    Berners-Price, Sue J.
    Year published
    2011
    Metadata
    Show full item record
    Abstract
    The cytosolic and mitochondrial thioredoxin reductases (TrxR1 and TrxR2) and thioredoxins (Trx1 and Trx2) are key components of the mammalian thioredoxin system that is important for antioxidant defense and redox regulation of cell function. TrxR1 and TrxR2 are selenoproteins generally considered have comparable properties, but functionally separated through their different compartments. To compare their properties we expressed recombinant human TrxR1 and TrxR2 and determined their substrate specificities and inhibition by metal compounds. TrxR2 preferred its endogenous substrate Trx2 over Trx1, while TrxR1 efficiently reduced ...
    View more >
    The cytosolic and mitochondrial thioredoxin reductases (TrxR1 and TrxR2) and thioredoxins (Trx1 and Trx2) are key components of the mammalian thioredoxin system that is important for antioxidant defense and redox regulation of cell function. TrxR1 and TrxR2 are selenoproteins generally considered have comparable properties, but functionally separated through their different compartments. To compare their properties we expressed recombinant human TrxR1 and TrxR2 and determined their substrate specificities and inhibition by metal compounds. TrxR2 preferred its endogenous substrate Trx2 over Trx1, while TrxR1 efficiently reduced both Trx1 and Trx2. TrxR2 displayed strikingly lower activity with DTNB, lipoamide and the quinone substrate juglone compared to TrxR1, and TrxR2 could not reduce lipoic acid. However, Sec-deficient two-amino acid truncated TrxR2 was almost as efficient as full-length TrxR2 in reduction of DTNB. We found that the gold(I) compound auranofin efficiently inhibited both full-length TrxR1 and TrxR2 and truncated TrxR2. In contrast, some newly synthesized gold(I) compounds and cisplatin inhibited only full-length TrxR1 or TrxR2, but not truncated TrxR2. Surprisingly, one gold(I) compound, [Au(d2pype)(2)]Cl, was a better inhibitor for TrxR1 while another, [(iPr(2)Im)(2)Au]Cl, mainly inhibited TrxR2. These compounds also inhibited TrxR activity in the cytoplasm and mitochondria of cells, but their cytotoxicity was not always dependent on the proapoptotic proteins Bax and Bak. In conclusion, this study reveals significant differences between human TrxR1 and TrxR2 in substrate specificities and metal compound inhibition in vitro and in cells, which may be exploited for development of specific TrxR1- or TrxR2-targeting drugs.
    View less >
    Journal Title
    Free Radical Biology and Medicine
    Volume
    50
    Issue
    6
    DOI
    https://doi.org/10.1016/j.freeradbiomed.2010.12.015
    Funder(s)
    ARC
    Grant identifier(s)
    DP0986318
    Subject
    Medicinal and biomolecular chemistry
    Biochemistry and cell biology
    Biochemistry and cell biology not elsewhere classified
    Medical biochemistry and metabolomics
    Publication URI
    http://hdl.handle.net/10072/39826
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander