• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Soil-plant nitrogen isotope composition and nitrogen cycling after biochar applications

    Author(s)
    Asadyar, L
    Xu, CY
    Wallace, HM
    Xu, Z
    Reverchon, F
    Bai, SH
    Griffith University Author(s)
    Xu, Zhihong
    Wallace, Helen M.
    Hosseini-Bai, Shahla
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    Biochar has strong potential to improve nitrogen (N) use efficiency in both agricultural and horticultural systems. Biochar is usually co-applied with full rates of fertiliser. However, the extent to which N cycling can be affected after biochar application to meet plant N requirement remains uncertain. This study aimed to explore N cycling up to 2 years after biochar application. We applied pine woodchip biochar at 0, 10 and 30 t ha−1 (B0, B10, B30, respectively) in a macadamia orchard and evaluated the N isotope composition (δ15N) of soil, microbial biomass and macadamia leaves. Soil total N (TN) and inorganic N pools were ...
    View more >
    Biochar has strong potential to improve nitrogen (N) use efficiency in both agricultural and horticultural systems. Biochar is usually co-applied with full rates of fertiliser. However, the extent to which N cycling can be affected after biochar application to meet plant N requirement remains uncertain. This study aimed to explore N cycling up to 2 years after biochar application. We applied pine woodchip biochar at 0, 10 and 30 t ha−1 (B0, B10, B30, respectively) in a macadamia orchard and evaluated the N isotope composition (δ15N) of soil, microbial biomass and macadamia leaves. Soil total N (TN) and inorganic N pools were also measured up to 2 years after biochar application. Biochar did not alter soil TN but soil NO3−-N increased at months 12 and 24 after biochar application. Soil NO3−-N concentrations were always over ideal levels of 15 μg g−1 in B30 throughout the study. Stepwise regression indicated that foliar δ15N decreases after biochar application were explained by increased NO3−-N concentrations in B30. Foliar TN and photosynthesis were not affected by biochar application. The soil in the high rate biochar plots had excess NO3−-N concentrations (over 30 μg g−1) from month 20 onwards. Therefore, N fertiliser applications could be adjusted to prevent excessive N inputs and increase farm profitability.
    View less >
    Journal Title
    Environmental Science and Pollution Research
    DOI
    https://doi.org/10.1007/s11356-020-11016-3
    Note
    This publication has been entered in Griffith Research Online as an advanced online version.
    Subject
    Chemical sciences
    Environmental sciences
    Biological sciences
    Macadamia integrifolia
    Nitrogen isotope composition
    Nitrogen retention
    Photosynthesis
    Wood-based biochar
    Publication URI
    http://hdl.handle.net/10072/398426
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander