Dragonfly algorithm: Theory, literature review, and application in feature selection
Author(s)
Mafarja, M
Heidari, AA
Faris, H
Mirjalili, S
Aljarah, I
Griffith University Author(s)
Year published
2020
Metadata
Show full item recordAbstract
In this chapter, a wrapper-based feature selection algorithm is designed and substantiated based on the binary variant of Dragonfly Algorithm (BDA). DA is a successful, well-established metaheuristic that revealed superior efficacy in dealing with various optimization problems including feature selection. In this chapter we are going first present the inspirations and methamatical modeds of DA in details. Then, the performance of this algorithm is tested on a special type of datasets that contain a huge number of features with low number of samples. This type of datasets makes the optimization process harder, because of the ...
View more >In this chapter, a wrapper-based feature selection algorithm is designed and substantiated based on the binary variant of Dragonfly Algorithm (BDA). DA is a successful, well-established metaheuristic that revealed superior efficacy in dealing with various optimization problems including feature selection. In this chapter we are going first present the inspirations and methamatical modeds of DA in details. Then, the performance of this algorithm is tested on a special type of datasets that contain a huge number of features with low number of samples. This type of datasets makes the optimization process harder, because of the large search space, and the lack of adequate samples to train the model. The experimental results showed the ability of DA to deal with this type of datasets better than other optimizers in the literature. Moreover, an extensive literature review for the DA is provided in this chapter.
View less >
View more >In this chapter, a wrapper-based feature selection algorithm is designed and substantiated based on the binary variant of Dragonfly Algorithm (BDA). DA is a successful, well-established metaheuristic that revealed superior efficacy in dealing with various optimization problems including feature selection. In this chapter we are going first present the inspirations and methamatical modeds of DA in details. Then, the performance of this algorithm is tested on a special type of datasets that contain a huge number of features with low number of samples. This type of datasets makes the optimization process harder, because of the large search space, and the lack of adequate samples to train the model. The experimental results showed the ability of DA to deal with this type of datasets better than other optimizers in the literature. Moreover, an extensive literature review for the DA is provided in this chapter.
View less >
Book Title
Nature-Inspired Optimizers: Theories, Literature Reviews and Applications
Subject
Artificial intelligence