Show simple item record

dc.contributor.authorYang, Dongjiangen_US
dc.contributor.authorLiu, Hongweien_US
dc.contributor.authorZheng, Zhanfengen_US
dc.contributor.authorYuan, Yongen_US
dc.contributor.authorZhao, Jin-Caien_US
dc.contributor.authorR. Waclawik, Ericen_US
dc.contributor.authorKe, Xuebinen_US
dc.contributor.authorZhu, Huaiyongen_US
dc.date.accessioned2017-05-03T15:56:37Z
dc.date.available2017-05-03T15:56:37Z
dc.date.issued2009en_US
dc.date.modified2011-08-12T06:19:30Z
dc.identifier.issn0002-7863en_US
dc.identifier.doi10.1021/ja906774ken_AU
dc.identifier.urihttp://hdl.handle.net/10072/39901
dc.description.abstractA new efficient photocatalyst structure, a shell of anatase nanocrystals on the fibril core of a single TiO2(B) crystal, was obtained via two consecutive partial phase transition processes. In the first stage of the process, titanate nanofibers reacted with dilute acid solution under moderate hydrothermal conditions, yielding the anatase nanocrystals on the fiber. In the subsequent heating process, the fibril core of titanate was converted into a TiO2(B) single crystal while the anatase crystals in the shell remained unchanged. The anatase nanocrystals do not attach to the TiO2(B) core randomly but coherently with a close crystallographic registry to the core to form a stable phase interface. For instance, (001) planes in anatase and (100) planes of TiO2(B) join together to form a stable interface. Such a unique structure has several features that enhance the photocatalytic activity of these fibers. First, the differences in the band edges of the two phases promote migration of the photogenerated holes from anatase shell to the TiO2(B) core. Second, the well-matched phase interfaces allow photogenerated electrons and holes to readily migrate across the interfaces because the holes migrate much faster than excited electrons, more holes than electrons migrate to TiO2(B) and this reduces the recombination of the photogenerated charges in anatase shell. Third, the surface of the anatase shell has both a strong ability to regenerate surface hydroxyl groups and adsorb O2, the oxidant of the reaction, to yield reactive hydroxyl radicals (OH穠through reaction between photogenerated holes and surface hydroxyl groups. The adsorbed O2 molecules can capture the excited electrons on the surface, forming reactive O2- species. The more reactive species generated on the external surface, the higher the photocatalytic activity will be, and generation of the reactive species also contributes to reducing recombination of the photogenerated charges. Indeed, the mixed-phase nanofibers exhibited superior photocatalytic activity for degradation of sulforhodamine B under UV light to the nanofibers of either pure phase alone or mechanical mixtures of the pure phase nanofibers with a similar phase composition. Finally, the nanofibril morphology has an additional advantage that they can be separated readily after reaction for reuse by sedimentation. This is very important because the high cost for separating the catalyst nanocrystals has seriously impeded the applications of TiO2 photocatalysts on an industrial scale.en_US
dc.description.peerreviewedYesen_US
dc.description.publicationstatusYesen_AU
dc.languageEnglishen_US
dc.language.isoen_AU
dc.publisherAmerican Chemical Societyen_US
dc.publisher.placeUnited Statesen_US
dc.relation.ispartofstudentpublicationNen_AU
dc.relation.ispartofpagefrom17885en_US
dc.relation.ispartofpageto17893en_US
dc.relation.ispartofissue49en_US
dc.relation.ispartofjournalJournal of American Chemical Societyen_US
dc.relation.ispartofvolume131en_US
dc.rights.retentionYen_AU
dc.subject.fieldofresearchColloid and Surface Chemistryen_US
dc.subject.fieldofresearchcode030603en_US
dc.titleAn Efficient Photocatalyst Structure: TiO2(B) Nanofibers with a Shell of Anatase Nanocrystalsen_US
dc.typeJournal articleen_US
dc.type.descriptionC1 - Peer Reviewed (HERDC)en_US
dc.type.codeC - Journal Articlesen_US
gro.rights.copyrightSelf-archiving of the author-manuscript version is not yet supported by this journal. Please refer to the journal link for access to the definitive, published version or contact the author[s] for more information.en_AU
gro.date.issued2009
gro.hasfulltextNo Full Text


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record