• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Effects of climate change on tree water use efficiency, nitrogen availability and growth in boreal forest of northern China

    Author(s)
    Succarie, Amal
    Xu, Zhihong
    Wang, Wenjie
    Liu, Tengjiao
    Zhang, Xiting
    Cao, Xudong
    Griffith University Author(s)
    Liu, Lilia
    Xu, Zhihong
    Succarie, Amal
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    Purpose: Climate change, particularly rising atmospheric carbon dioxide (CO2) concentration, can influence carbon (C) and nitrogen cycling (N) in different forest ecosystems. The major objective of this study was to quantify the long-term physiological and tree growth trends of Larix gmelinii plantation in a boreal environment of northern China in response to elevated atmospheric CO2 concentration and other climatic conditions. Materials and methods: Tree rings were extracted from four Larix gmelinii sample trees, located in a boreal plantation forest of Mohe City, Heilongjiang Province, China. Tree rings were measured with ...
    View more >
    Purpose: Climate change, particularly rising atmospheric carbon dioxide (CO2) concentration, can influence carbon (C) and nitrogen cycling (N) in different forest ecosystems. The major objective of this study was to quantify the long-term physiological and tree growth trends of Larix gmelinii plantation in a boreal environment of northern China in response to elevated atmospheric CO2 concentration and other climatic conditions. Materials and methods: Tree rings were extracted from four Larix gmelinii sample trees, located in a boreal plantation forest of Mohe City, Heilongjiang Province, China. Tree rings were measured with a mean annual basal area increment (BAI), while tree ring stable C isotope composition (δ13C) and N isotopic composition (δ15N) as well as total C and N concentration were measured on mass spectrometer at 3-year intervals. Tree intrinsic water use efficiency (iWUE) was calculated using tree rings δ13C and atmospheric δ13C data. Multiple regression analysis was used to quantify the BAI and WUE relationships with atmospheric CO2 concentration, temperature, precipitation and humidity of the study site. Results and discussion: The results showed a quadratically decrease in relative humidity over the past 60 years with rising temperature, indicating the initial increasing water availability, which is peaked, but increasing water limitation thereafter. Tree iWUE continued to increase as atmospheric CO2 concentration (Ca) increased. Tree BAI showed a quadratic relationship with atmospheric CO2 (Ca), increasing initially, but peaking at the critical threshold of 352.5 ppm or in 1986, and decreasing with the Ca thereafter. Tree ring δ15N, an index of N availability, also responded non-linearly to the rising Ca, increasing initially with the Ca, but peaking at the critical Ca of 348–367 ppm and decreasing thereafter with the rising Ca, indicating the decreasing N availability in the last 20–30 years after the Ca continued to rise. Conclusions: The iWUE of Larix gmelinii continued to increase under rising Ca, but this increased iWUE did not translate into tree growth consistently due to increasing water and N limitation in the boreal forest ecosystems under intensifying climate change in the last 20–30 years.
    View less >
    Journal Title
    Journal of Soils and Sediments
    Volume
    20
    Issue
    10
    DOI
    https://doi.org/10.1007/s11368-020-02734-9
    Subject
    Earth sciences
    Environmental sciences
    Agricultural, veterinary and food sciences
    Science & Technology
    Life Sciences & Biomedicine
    Soil Science
    Ecology
    Publication URI
    http://hdl.handle.net/10072/399140
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander