• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Dynamic Butterfly Optimization Algorithm for Feature Selection

    Thumbnail
    View/Open
    Mirjalili449185-Published.pdf (3.376Mb)
    File version
    Version of Record (VoR)
    Author(s)
    Tubishat, Mohammad
    Alswaitti, Mohammed
    Mirjalili, Seyedali
    Al-Garadi, Mohammed Ali
    Alrashdan, Ma'en Tayseer
    Rana, Toqir A
    Griffith University Author(s)
    Mirjalili, Seyedali
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    Feature selection represents an essential pre-processing step for a wide range of Machine Learning approaches. Datasets typically contain irrelevant features that may negatively affect the classifier performance. A feature selector can reduce the number of these features and maximise the classifier accuracy. This paper proposes a Dynamic Butterfly Optimization Algorithm (DBOA) as an improved variant to Butterfly Optimization Algorithm (BOA) for feature selection problems. BOA represents one of the most recently proposed optimization algorithms. BOA has demonstrated its ability to solve different types of problems with ...
    View more >
    Feature selection represents an essential pre-processing step for a wide range of Machine Learning approaches. Datasets typically contain irrelevant features that may negatively affect the classifier performance. A feature selector can reduce the number of these features and maximise the classifier accuracy. This paper proposes a Dynamic Butterfly Optimization Algorithm (DBOA) as an improved variant to Butterfly Optimization Algorithm (BOA) for feature selection problems. BOA represents one of the most recently proposed optimization algorithms. BOA has demonstrated its ability to solve different types of problems with competitive results compared to other optimization algorithms. However, the original BOA algorithm has problems when optimising high-dimensional problems. Such issues include stagnation into local optima and lacking solutions diversity during the optimization process. To alleviate these weaknesses of the original BOA, two significant improvements are introduced in the original BOA: the development of a Local Search Algorithm Based on Mutation (LSAM) operator to avoid local optima problem and the use of LSAM to improve BOA solutions diversity. To demonstrate the efficiency and superiority of the proposed DBOA algorithm, 20 benchmark datasets from the UCI repository are employed. The classification accuracy, the fitness values, the number of selected features, the statistical results, and convergence curves are reported for DBOA and its competing algorithms. These results demonstrate that DBOA significantly outperforms the comparative algorithms on the majority of the used performance metrics.
    View less >
    Journal Title
    IEEE Access
    Volume
    8
    DOI
    https://doi.org/10.1109/access.2020.3033757
    Copyright Statement
    © The Author(s) 2020. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND 4.0) License, which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
    Subject
    Engineering
    Publication URI
    http://hdl.handle.net/10072/399165
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander