A “hit-and-run” affair – A possible link for cancer progression in virally driven cancers

View/ Open
File version
Accepted Manuscript (AM)
Author(s)
Ferreira, Danyelle A
Tayyar, Yaman
Idris, Adi
McMillan, Nigel AJ
Year published
2020
Metadata
Show full item recordAbstract
Background: It is well-known that certain cancers are caused by viruses. However, viral oncogenesis is complex and only a small fraction of the infected people develop cancer. Indeed, a number of environmental factors can contribute to virally infected cells developing cancer hallmarks, promoting tumorigenesis. Scope of review: The hit-and-run theory proposes that viruses facilitate the accumulation of mutations and promote genomic instability until the virus becomes dispensable for tumour maintenance. Indeed, several studies have reported viral genome, episome and/or oncogene loss in tumour cells without losing malignant ...
View more >Background: It is well-known that certain cancers are caused by viruses. However, viral oncogenesis is complex and only a small fraction of the infected people develop cancer. Indeed, a number of environmental factors can contribute to virally infected cells developing cancer hallmarks, promoting tumorigenesis. Scope of review: The hit-and-run theory proposes that viruses facilitate the accumulation of mutations and promote genomic instability until the virus becomes dispensable for tumour maintenance. Indeed, several studies have reported viral genome, episome and/or oncogene loss in tumour cells without losing malignant phenotype. Major conclusions: The current evidence supports the clear contribution of certain viruses to develop cancers. Importantly, the evidence supporting the sustained maintenance of malignancy after the loss of viral “presence” is sufficient to support the hit-and-run hypothesis of viral cancer development. Long-term tracking of vaccination outcome over the decades will test this theory. General significance: If the hit-and-run theory is true, viruses might cause more cancers than previously thought and will have implications in the prevention of many cancers through implementing vaccination programs.
View less >
View more >Background: It is well-known that certain cancers are caused by viruses. However, viral oncogenesis is complex and only a small fraction of the infected people develop cancer. Indeed, a number of environmental factors can contribute to virally infected cells developing cancer hallmarks, promoting tumorigenesis. Scope of review: The hit-and-run theory proposes that viruses facilitate the accumulation of mutations and promote genomic instability until the virus becomes dispensable for tumour maintenance. Indeed, several studies have reported viral genome, episome and/or oncogene loss in tumour cells without losing malignant phenotype. Major conclusions: The current evidence supports the clear contribution of certain viruses to develop cancers. Importantly, the evidence supporting the sustained maintenance of malignancy after the loss of viral “presence” is sufficient to support the hit-and-run hypothesis of viral cancer development. Long-term tracking of vaccination outcome over the decades will test this theory. General significance: If the hit-and-run theory is true, viruses might cause more cancers than previously thought and will have implications in the prevention of many cancers through implementing vaccination programs.
View less >
Journal Title
Biochimica et Biophysica Acta (BBA) - Reviews on Cancer
Copyright Statement
© 2020 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence, which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
Note
This publication has been entered into Griffith Research Online as an Advanced Online Version.
Subject
Oncology and carcinogenesis
Biochemistry and cell biology