• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Being Well-Connected Pays in a Disturbed World: Enhanced Herbivory in Better-Linked Habitats

    Thumbnail
    View/Open
    Pearson449470-Published.pdf (3.874Mb)
    File version
    Version of Record (VoR)
    Author(s)
    Jinks, Kristin I
    Brown, Christopher J
    Schlacher, Thomas A
    Olds, Andrew D
    Engelhard, Sarah L
    Pearson, Ryan M
    Connolly, Rod M
    Griffith University Author(s)
    Connolly, Rod M.
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    Seascapes are typically comprised of multiple components that are functionally linked by the movement of organisms and fluxes of matter. Changes to the number and spatial arrangement of these linkages affect biological connectivity that, in turn, can alter ecological functions. Herbivory is one such function, pivotal in controlling excessive algal growth when systems become disturbed. Here, we used microcosm experiments to test how the change to connectivity affects herbivory under different levels of disturbance. We applied network theory to measure types of connectivity at different scales (patch and whole system) and ...
    View more >
    Seascapes are typically comprised of multiple components that are functionally linked by the movement of organisms and fluxes of matter. Changes to the number and spatial arrangement of these linkages affect biological connectivity that, in turn, can alter ecological functions. Herbivory is one such function, pivotal in controlling excessive algal growth when systems become disturbed. Here, we used microcosm experiments to test how the change to connectivity affects herbivory under different levels of disturbance. We applied network theory to measure types of connectivity at different scales (patch and whole system) and quantified herbivory by a crustacean mesograzer exposed to excess algae, mimicking pulse and press disturbances. We demonstrate that greater connectivity significantly enhances herbivory in Clibanarius virescens: Both the number of linkages and their spatial arrangement interact to shape the response of herbivory in systems to disturbance. Our findings highlight the value of controlled experiments for advancing theories about the potential effects of connectivity on important ecological functions, such as herbivory, and justify further investigation to measure how connectivity might affect the resilience of ecosystems. We posit that the variation in the type, and scale, of spatial linkages might have profound consequences for managing the capacity of ecosystems to respond to disturbance.
    View less >
    Journal Title
    Diversity
    Volume
    12
    Issue
    11
    DOI
    https://doi.org/10.3390/d12110424
    Copyright Statement
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    Subject
    Ecology
    Analytical chemistry
    Publication URI
    http://hdl.handle.net/10072/399251
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander