• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Load Shedding for Complex Event Processing: Input-based and State-based Techniques

    Author(s)
    Zhao, Bo
    Nguyen, Quoc Viet Hung
    Weidlich, Matthias
    Griffith University Author(s)
    Nguyen, Henry
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    Complex event processing (CEP) systems that evaluate queries over streams of events may face unpredictable input rates and query selectivities. During short peak times, exhaustive processing is then no longer reasonable, or even infeasible, and systems shall resort to best-effort query evaluation and strive for optimal result quality while staying within a latency bound. In traditional data stream processing, this is achieved by load shedding that discards some stream elements without processing them based on their estimated utility for the query result. We argue that such input-based load shedding is not always suitable for ...
    View more >
    Complex event processing (CEP) systems that evaluate queries over streams of events may face unpredictable input rates and query selectivities. During short peak times, exhaustive processing is then no longer reasonable, or even infeasible, and systems shall resort to best-effort query evaluation and strive for optimal result quality while staying within a latency bound. In traditional data stream processing, this is achieved by load shedding that discards some stream elements without processing them based on their estimated utility for the query result. We argue that such input-based load shedding is not always suitable for CEP queries. It assumes that the utility of each individual element of a stream can be assessed in isolation. For CEP queries, however, this utility may be highly dynamic: Depending on the presence of partial matches, the impact of discarding a single event can vary drastically. In this work, we therefore complement input-based load shedding with a state-based technique that discards partial matches. We introduce a hybrid model that combines both input-based and state-based shedding to achieve high result quality under constrained resources. Our experiments indicate that such hybrid shedding improves the recall by up to 14× for synthetic data and 11.4× for real-world data, compared to baseline approaches.
    View less >
    Conference Title
    2020 IEEE 36th International Conference on Data Engineering (ICDE)
    DOI
    https://doi.org/10.1109/icde48307.2020.00099
    Subject
    Artificial intelligence
    Publication URI
    http://hdl.handle.net/10072/399258
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander