Experimental and theoretical study of seismic and progressive collapse resilient composite frames

View/ Open
File version
Accepted Manuscript (AM)
Author(s)
Tian, Yuan
Lin, Kaiqi
Lu, Xinzheng
Zhang, Lei
Li, Yi
Guan, Hong
Griffith University Author(s)
Year published
2020
Metadata
Show full item recordAbstract
A steel-concrete composite frame is typically used for building construction. Earthquake action and progressive collapse event caused by accidental local failures are the primary threats affecting the safety of steel-concrete composite frames. Currently, multi-hazard resistance and building resilience have garnered much research attention from the international civil engineering community. Based on the previously proposed first-generation seismic and progressive collapse resistant composite frame (SPCRCF), an improved second-generation seismic and progressive collapse resilient steel-concrete composite frame (SPCRCF-2) is ...
View more >A steel-concrete composite frame is typically used for building construction. Earthquake action and progressive collapse event caused by accidental local failures are the primary threats affecting the safety of steel-concrete composite frames. Currently, multi-hazard resistance and building resilience have garnered much research attention from the international civil engineering community. Based on the previously proposed first-generation seismic and progressive collapse resistant composite frame (SPCRCF), an improved second-generation seismic and progressive collapse resilient steel-concrete composite frame (SPCRCF-2) is proposed. The performance of SPCRCF-2 is compared with that of SPCRCF as well as a conventional steel-concrete composite frame (CSCCF) through seismic and progressive collapse experiments. Compared with CSCCF and SPCRCF, SPCRCF-2 is proven to be able to localize the damage to the replaceable energy-dissipating (ED) components under both seismic and progressive collapse conditions, whilst maintaining the other key components (beams and columns) damage-free. This special feature facilitates rapid repair of the structure thereby achieving multi-hazard resilience. Finally, theoretical models are proposed to calculate the initial stiffness and flexural yield strength of the beam-column joint connection in SPCRCF-2. The models are further validated by the experimental results.
View less >
View more >A steel-concrete composite frame is typically used for building construction. Earthquake action and progressive collapse event caused by accidental local failures are the primary threats affecting the safety of steel-concrete composite frames. Currently, multi-hazard resistance and building resilience have garnered much research attention from the international civil engineering community. Based on the previously proposed first-generation seismic and progressive collapse resistant composite frame (SPCRCF), an improved second-generation seismic and progressive collapse resilient steel-concrete composite frame (SPCRCF-2) is proposed. The performance of SPCRCF-2 is compared with that of SPCRCF as well as a conventional steel-concrete composite frame (CSCCF) through seismic and progressive collapse experiments. Compared with CSCCF and SPCRCF, SPCRCF-2 is proven to be able to localize the damage to the replaceable energy-dissipating (ED) components under both seismic and progressive collapse conditions, whilst maintaining the other key components (beams and columns) damage-free. This special feature facilitates rapid repair of the structure thereby achieving multi-hazard resilience. Finally, theoretical models are proposed to calculate the initial stiffness and flexural yield strength of the beam-column joint connection in SPCRCF-2. The models are further validated by the experimental results.
View less >
Journal Title
Soil Dynamics and Earthquake Engineering
Volume
139
Copyright Statement
© 2020 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
Subject
Geophysics
Civil engineering
Science & Technology
Physical Sciences
Engineering, Geological
Geosciences, Multidisciplinary