• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Smart drug combinations for cervical cancer: dual targeting of Bcl-2 family of proteins and aurora kinases

    Thumbnail
    View/Open
    Yumol449642Published.pdf (742.9Kb)
    File version
    Version of Record (VoR)
    Author(s)
    Yumol, Jacklyn
    Gabrielli, Brian
    Tayyar, Yaman
    McMillan, Nigel Aj
    Idris, Adi
    Griffith University Author(s)
    McMillan, Nigel
    Tayyar, Yaman
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    Human papillomavirus (HPV) is the main causative agent in cervical cancers. Recurrent cervical cancer is refractory to currently available treatments. Clearly there is an urgent unmet need to investigate new therapeutic strategies for both the newly diagnosed and recurrent patient populations. We have previously shown that the presence of HPV oncogenes sensitizes cells to inhibition of aurora kinases (AURKs), which induces mitotic delay eventually leading to apoptotic cell death. In this study, we explored whether a dual approach of combining an AURK inhibitor, MLN8237 (Alisertib), with a range of Bcl-2 family anti-apoptotic ...
    View more >
    Human papillomavirus (HPV) is the main causative agent in cervical cancers. Recurrent cervical cancer is refractory to currently available treatments. Clearly there is an urgent unmet need to investigate new therapeutic strategies for both the newly diagnosed and recurrent patient populations. We have previously shown that the presence of HPV oncogenes sensitizes cells to inhibition of aurora kinases (AURKs), which induces mitotic delay eventually leading to apoptotic cell death. In this study, we explored whether a dual approach of combining an AURK inhibitor, MLN8237 (Alisertib), with a range of Bcl-2 family anti-apoptotic protein inhibitors would accelerate cancer cell killing. Enhanced and rapid cervical cancer cell killing was observed when Alisertib was combined with inhibitors of either Bcl-2 (Venetoclax), Bcl-XL (A1331852) or Mcl-1 (A1210477) proteins, likely by accelerating apoptosis during mitotic delay due to the loss of functional Bcl-2, Mcl-1, or Bcl-XL. This study presents a promising approach to treating aggressive cervical cancers and may apply to other HPV-related cancers.
    View less >
    Journal Title
    American Journal of Cancer Research
    Volume
    10
    Issue
    10
    Publisher URI
    http://www.ajcr.us/AJCR_V10N10.html
    Copyright Statement
    © The Author(s) 2020. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License, which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
    Subject
    Oncology and carcinogenesis
    HPV
    alisertib
    aurora kinase
    cervical cancer
    Publication URI
    http://hdl.handle.net/10072/399289
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander