• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Partial Dominance for Many-Objective Optimization

    Author(s)
    Helbig, Mardé
    Engelbrecht, Andries
    Griffith University Author(s)
    Helbig, Mardé
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    Many optimisation problems have more than three objectives, referred to as many-objective optimisation problems (MaOPs). As the number of objectives increases, the number of solutions that are non-dominated with regards to one another also increases. Therefore, multi-objective optimisation algorithms (MOAs) that use Pareto-dominance struggle to converge to the Pareto-optimal front (POF) and to find a diverse set of solutions on the POF. This article investigates the use of MOAs to solve MaOPs by guiding the search through Pareto-dominance on three randomly selected objectives. This approach is applied to the non-dominated ...
    View more >
    Many optimisation problems have more than three objectives, referred to as many-objective optimisation problems (MaOPs). As the number of objectives increases, the number of solutions that are non-dominated with regards to one another also increases. Therefore, multi-objective optimisation algorithms (MOAs) that use Pareto-dominance struggle to converge to the Pareto-optimal front (POF) and to find a diverse set of solutions on the POF. This article investigates the use of MOAs to solve MaOPs by guiding the search through Pareto-dominance on three randomly selected objectives. This approach is applied to the non-dominated sorting genetic algorithm II (NSGA-II) and a multi-objective particle swarm optimisation (OMOPSO) algorithm, where three objectives are randomly selected at either every iteration or every five iterations. These algorithms are compared against the original versions of these algorithms. The results indicate that the proposed partial dominance approach outperformed the original versions of these algorithms, especially on benchmarks with 8 and 10 objectives.
    View less >
    Conference Title
    Proceedings of 2020 4th International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence (ISMSI 2020)
    DOI
    https://doi.org/10.1145/3396474.3396482
    Subject
    Evolutionary computation
    Optimisation
    Publication URI
    http://hdl.handle.net/10072/399404
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander