• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Dynamic Multi-objective Optimisation Problems with Intertemporal Dependencies

    Author(s)
    van Tonder, Bernard
    Helbig, Mardé
    Griffith University Author(s)
    Helbig, Mardé
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    A core goal of research in dynamic multi-objective optimisation (DMOO) is to develop algorithms that can find the best possible trade-off solutions for real-world DMOO problems (RWPs). A useful comparison of DMOO algorithms for RWPs require benchmark functions that are representative of RWPs. However, only a few standard DMOO benchmark functions contain complex intertemporal dependencies found in RWPs. This study evaluates the performance of two DMOO algorithms on two benchmark functions (BFs) with various combinations of frequency and severity of change, as well as extended versions of these BFs that include intertemporal ...
    View more >
    A core goal of research in dynamic multi-objective optimisation (DMOO) is to develop algorithms that can find the best possible trade-off solutions for real-world DMOO problems (RWPs). A useful comparison of DMOO algorithms for RWPs require benchmark functions that are representative of RWPs. However, only a few standard DMOO benchmark functions contain complex intertemporal dependencies found in RWPs. This study evaluates the performance of two DMOO algorithms on two benchmark functions (BFs) with various combinations of frequency and severity of change, as well as extended versions of these BFs that include intertemporal dependencies. The results indicate that the performance of the algorithms was significantly worse on the BFs with intertemporal dependencies.
    View less >
    Conference Title
    Proceedings of the 2020 Genetic and Evolutionary Computation Conference (GECCO '20)
    DOI
    https://doi.org/10.1145/3377929.3389991
    Subject
    Computational complexity and computability
    Optimisation
    Evolutionary computation
    Publication URI
    http://hdl.handle.net/10072/399405
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander