• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Analysis on the effect of spatial and spectral resolution of different remote sensing data in sugarcane crop yield study

    Thumbnail
    View/Open
    Xu444101-Published.pdf (1001.Kb)
    File version
    Version of Record (VoR)
    Author(s)
    Akbarian, S
    Xu, CY
    Lim, S
    Griffith University Author(s)
    Xu, Chengyuan
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    Sugarcane is a perennial crop that contributes to nearly 80% of the global sugar-based products. Therefore, sugarcane growers and food companies are seeking ways to address the concerns related to sugarcane crop yield and health. In this study, a spatial and spectral analysis on the peak growth stage of the sugarcane fields in Bundaberg, Queensland, Australia is performed using the Normalized Difference Vegetation Index (NDVI) and Normalized Difference Red Edge Index (NDRE) derived from high-resolution WorldView-2 (WV2) images and multispectral Unmanned Aerial Vehicle (UAV) images. Two topics are chosen for this study: 1) ...
    View more >
    Sugarcane is a perennial crop that contributes to nearly 80% of the global sugar-based products. Therefore, sugarcane growers and food companies are seeking ways to address the concerns related to sugarcane crop yield and health. In this study, a spatial and spectral analysis on the peak growth stage of the sugarcane fields in Bundaberg, Queensland, Australia is performed using the Normalized Difference Vegetation Index (NDVI) and Normalized Difference Red Edge Index (NDRE) derived from high-resolution WorldView-2 (WV2) images and multispectral Unmanned Aerial Vehicle (UAV) images. Two topics are chosen for this study: 1) the difference and correlation between NDVI and NDRE that are commonly used to estimate Leaf Area Index, a common crop parameter for the assessment of crop yield and health stages; 2) the impact of spatial resolution on the systematic difference in the abovementioned two Vegetation Indices (VIs). The statistical correlation analysis between the WV2 and UAV images produced correlation coefficients of 0.68 and 0.71 for NDVI and NDRE, respectively. In addition, an overall comparison of the WV2 and UAV-derived VIs indicated that the UAV images produced a better accuracy than the WV2 images because UAV can effectively distinguish various status of vegetation owing to its high spatial resolution. The results illustrated a strong positive correlation between NDVI and NDRE, each derived from the WV2 and UAV images, and the correlation coefficients were 0.81 and 0.90, respectively, i.e. the correlation between NDVI and NDRE is higher in the UAV images than the WV2 images.
    View less >
    Conference Title
    ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
    Volume
    5
    Issue
    3
    DOI
    https://doi.org/10.5194/isprs-Annals-V-3-2020-655-2020
    Copyright Statement
    © Author(s) 2020. his is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License, which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
    Subject
    Artificial intelligence
    Crop and pasture production
    Publication URI
    http://hdl.handle.net/10072/399418
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander