Solution‐Processed Pure Sulfide Cu2(Zn0.6Cd0.4)SnS4 Solar Cells with Efficiency 10.8% Using Ultrathin CuO Intermediate Layer
Author(s)
Zhuk, Siarhei
Wong, Terence Kin Shun
Petrovic, Milos
Kymakis, Emmanuel
Hadke, Shreyash Sudhakar
Lie, Stener
Wong, Lydia Helena
Sonar, Prashant
Dey, Avishek
Krishnamurthy, Satheesh
Dalapati, Goutam Kumar
Griffith University Author(s)
Year published
2020
Metadata
Show full item recordAbstract
Herein, it is demonstrated that incorporating ultrathin p-type cupric oxide (CuO) enhances the performance and stability of solution-processed Cu2(Zn0.6Cd0.4)SnS4 (CZCTS)/CdS thin film solar cells. In sol–gel CZCTS/CdS thin film solar cells, nanoscale CuO films (4–32 nm) are deposited on top of molybdenum (Mo) by magnetron sputtering and this is used as an intermediate layer (IL). The CuO IL thickness has a significant effect on the short-circuit current density (JSC) in CZCTS/CdS solar cell devices. As a result, a maximum power conversion efficiency (PCE) of 10.77% is measured for the optimized device with 4 nm CuO compared ...
View more >Herein, it is demonstrated that incorporating ultrathin p-type cupric oxide (CuO) enhances the performance and stability of solution-processed Cu2(Zn0.6Cd0.4)SnS4 (CZCTS)/CdS thin film solar cells. In sol–gel CZCTS/CdS thin film solar cells, nanoscale CuO films (4–32 nm) are deposited on top of molybdenum (Mo) by magnetron sputtering and this is used as an intermediate layer (IL). The CuO IL thickness has a significant effect on the short-circuit current density (JSC) in CZCTS/CdS solar cell devices. As a result, a maximum power conversion efficiency (PCE) of 10.77% is measured for the optimized device with 4 nm CuO compared with 10.03% for the reference device without a CuO layer. Furthermore, the stability of the devices is enhanced significantly by incorporating the CuO IL. This work demonstrates that through proper design of the CuO IL thickness, both the back interface quality and optical property of the CZCTS absorber can be tuned to enhance the device performance.
View less >
View more >Herein, it is demonstrated that incorporating ultrathin p-type cupric oxide (CuO) enhances the performance and stability of solution-processed Cu2(Zn0.6Cd0.4)SnS4 (CZCTS)/CdS thin film solar cells. In sol–gel CZCTS/CdS thin film solar cells, nanoscale CuO films (4–32 nm) are deposited on top of molybdenum (Mo) by magnetron sputtering and this is used as an intermediate layer (IL). The CuO IL thickness has a significant effect on the short-circuit current density (JSC) in CZCTS/CdS solar cell devices. As a result, a maximum power conversion efficiency (PCE) of 10.77% is measured for the optimized device with 4 nm CuO compared with 10.03% for the reference device without a CuO layer. Furthermore, the stability of the devices is enhanced significantly by incorporating the CuO IL. This work demonstrates that through proper design of the CuO IL thickness, both the back interface quality and optical property of the CZCTS absorber can be tuned to enhance the device performance.
View less >
Journal Title
Solar RRL
Volume
4
Issue
9
Subject
Nanotechnology
Science & Technology
Energy & Fuels
Materials Science, Multidisciplinary
Materials Science