• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Marine Predators Algorithm: A nature-inspired metaheuristic

    Author(s)
    Faramarzi, Afshin
    Heidarinejad, Mohammad
    Mirjalili, Seyedali
    Gandomi, Amir H
    Griffith University Author(s)
    Mirjalili, Seyedali
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    This paper presents a nature-inspired metaheuristic called Marine Predators Algorithm (MPA) and its application in engineering. The main inspiration of MPA is the widespread foraging strategy namely Lévy and Brownian movements in ocean predators along with optimal encounter rate policy in biological interaction between predator and prey. MPA follows the rules that naturally govern in optimal foraging strategy and encounters rate policy between predator and prey in marine ecosystems. This paper evaluates the MPA's performance on twenty-nine test functions, test suite of CEC-BC-2017, randomly generated landscape, three engineering ...
    View more >
    This paper presents a nature-inspired metaheuristic called Marine Predators Algorithm (MPA) and its application in engineering. The main inspiration of MPA is the widespread foraging strategy namely Lévy and Brownian movements in ocean predators along with optimal encounter rate policy in biological interaction between predator and prey. MPA follows the rules that naturally govern in optimal foraging strategy and encounters rate policy between predator and prey in marine ecosystems. This paper evaluates the MPA's performance on twenty-nine test functions, test suite of CEC-BC-2017, randomly generated landscape, three engineering benchmarks, and two real-world engineering design problems in the areas of ventilation and building energy performance. MPA is compared with three classes of existing optimization methods, including (1) GA and PSO as the most well-studied metaheuristics, (2) GSA, CS and SSA as almost recently developed algorithms and (3) CMA-ES, SHADE and LSHADE-cnEpSin as high performance optimizers and winners of IEEE CEC competition. Among all methods, MPA gained the second rank and demonstrated very competitive results compared to LSHADE-cnEpSin as the best performing method and one of the winners of CEC 2017 competition. The statistical post hoc analysis revealed that MPA can be nominated as a high-performance optimizer and is a significantly superior algorithm than GA, PSO, GSA, CS, SSA and CMA-ES while its performance is statistically similar to SHADE and LSHADE-cnEpSin. The source code is publicly available at: https://github.com/afshinfaramarzi/Marine-Predators-Algorithm, http://built-envi.com/portfolio/marine-predators-algorithm/, https://www.mathworks.com/matlabcentral/fileexchange/74578-marine-predators-algorithm-mpa, and http://www.alimirjalili.com/MPA.html.
    View less >
    Journal Title
    Expert Systems with Applications
    Volume
    152
    DOI
    https://doi.org/10.1016/j.eswa.2020.113377
    Subject
    Mathematical sciences
    Engineering
    Science & Technology
    Computer Science, Artificial Intelligence
    Engineering, Electrical & Electronic
    Operations Research & Management Science
    Publication URI
    http://hdl.handle.net/10072/399590
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander