• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A Binary Equilibrium Optimization Algorithm for 0–1 Knapsack Problems

    Author(s)
    Abdel-Basset, M
    Mohamed, R
    Mirjalili, S
    Griffith University Author(s)
    Mirjalili, Seyedali
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    In this paper, a binary version of equilibrium optimization (BEO) is proposed for the tackling 0–1 knapsack problem characterized as a discrete problem. Because the standard equilibrium optimizer (EO) has been proposed for solving continuous optimization problems, a discrete variant is required to solve binary problems. Hence, eight transfer functions including V-Shaped and S-Shaped are employed to convert continuous EO to Binary EO (BEO). Among those transfer functions, this study demonstrates that V-Shaped V3 is the best one. It is also observed that the sigmoid S3 transfer function can be more beneficial than V3 for ...
    View more >
    In this paper, a binary version of equilibrium optimization (BEO) is proposed for the tackling 0–1 knapsack problem characterized as a discrete problem. Because the standard equilibrium optimizer (EO) has been proposed for solving continuous optimization problems, a discrete variant is required to solve binary problems. Hence, eight transfer functions including V-Shaped and S-Shaped are employed to convert continuous EO to Binary EO (BEO). Among those transfer functions, this study demonstrates that V-Shaped V3 is the best one. It is also observed that the sigmoid S3 transfer function can be more beneficial than V3 for improving the performance of other algorithms employed in this paper. We conclude that the performance of any binary algorithm relies on the good choice of the transfer function. In addition, we use the penalty function to sift the infeasible solution from the solutions of the problem and apply a repair algorithm (RA) for converting them to feasible solutions. The performance of the proposed algorithm is evaluated on three benchmark datasets with 63 instances of small-, medium-, and large-scale and compared with a number of the other algorithm proposed for solving 0–1 knapsack under different statistical analyses. The experimental results demonstrate that the BEOV3 algorithm is superior on all the small-, medium-scale case studies. Regarding the large-scale test cases, the proposed method achieves the optimal value for 13 out of 18 instances.2
    View less >
    Journal Title
    Computers and Industrial Engineering
    DOI
    https://doi.org/10.1016/j.cie.2020.106946
    Note
    This publication has been entered as an advanced online version in Griffith Research Online.
    Subject
    Mathematical sciences
    Engineering
    Publication URI
    http://hdl.handle.net/10072/399592
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander