• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Copper nanocrystals anchored on an O-rich carbonized corn gel for nitrogen electroreduction to ammonia

    Author(s)
    Li, C
    Zhang, S
    Ding, Z
    Zhou, H
    Wang, G
    Zhang, H
    Griffith University Author(s)
    Zhang, Haimin
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    The electrochemical nitrogen reduction reaction (ENRR), as a promising green N2 fixation strategy for the production of ammonia under ambient conditions, has attracted significant attention. Herein, we report the synthesis of copper nanocrystals anchored on a carbonized corn gel (Cu NCs/CCG) for electrochemical N2 fixation to NH3, in which the rich O-containing functional groups on CCG are beneficial for efficiently dispersing and stabilizing the copper nanocrystals. As a result, the obtained Cu NCs/CCG achieve a high faradaic efficiency (FE) of 25.89% and a large NH3 yield rate of 1514 μg h−1 mgCu−1 at −0.3 V versus an RHE ...
    View more >
    The electrochemical nitrogen reduction reaction (ENRR), as a promising green N2 fixation strategy for the production of ammonia under ambient conditions, has attracted significant attention. Herein, we report the synthesis of copper nanocrystals anchored on a carbonized corn gel (Cu NCs/CCG) for electrochemical N2 fixation to NH3, in which the rich O-containing functional groups on CCG are beneficial for efficiently dispersing and stabilizing the copper nanocrystals. As a result, the obtained Cu NCs/CCG achieve a high faradaic efficiency (FE) of 25.89% and a large NH3 yield rate of 1514 μg h−1 mgCu−1 at −0.3 V versus an RHE in 0.1 M Na2SO4. Moreover, the Cu NCs/CCG demonstrate good ENRR stability and durability. This work paves the way for developing high-performance ENRR electrocatalysts utilizing biomass derivatives as precursors for NH3 synthesis.
    View less >
    Journal Title
    Inorganic Chemistry Frontiers
    Volume
    7
    Issue
    19
    DOI
    https://doi.org/10.1039/d0qi00717j
    Subject
    Inorganic chemistry
    Publication URI
    http://hdl.handle.net/10072/399609
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander