• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Anion Etching for Accessing Rapid and Deep Self-Reconstruction of Precatalysts for Water Oxidation

    Author(s)
    Wang, Y
    Zhu, Y
    Zhao, S
    She, S
    Zhang, F
    Chen, Y
    Williams, T
    Gengenbach, T
    Zu, L
    Mao, H
    Zhou, W
    Shao, Z
    Wang, H
    Zhao, D
    et al.
    Griffith University Author(s)
    Zhao, Dongyuan
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    Rapid and deep self-reconstruction (SELF-RECON) was achieved through rational design of the precatalyst. The obtained core-shell nanowired precatalyst (NiMoFeO@NC) consists of NiMoO4 nanoparticles (core) and NiFe/NiFeOx nanoparticles in N-doped carbons (shell). The SELF-RECON process was facilitated by rapid MoO42− dissolution in the core of NiMoFeO@NC and fast formation of NiOOH with Fe incorporation simultaneously, which was monitored and demonstrated by in situ Raman experiments. The obtained SELF-RECONCAT outperforms NiMoFeO@NC, with ultralow overpotentials and extraordinary long-term stability.Rapid and deep self-reconstruction (SELF-RECON) was achieved through rational design of the precatalyst. The obtained core-shell nanowired precatalyst (NiMoFeO@NC) consists of NiMoO4 nanoparticles (core) and NiFe/NiFeOx nanoparticles in N-doped carbons (shell). The SELF-RECON process was facilitated by rapid MoO42− dissolution in the core of NiMoFeO@NC and fast formation of NiOOH with Fe incorporation simultaneously, which was monitored and demonstrated by in situ Raman experiments. The obtained SELF-RECONCAT outperforms NiMoFeO@NC, with ultralow overpotentials and extraordinary long-term stability.
    View less >
    Journal Title
    Matter
    DOI
    https://doi.org/10.1016/j.matt.2020.09.016
    Note
    This publication has been entered as an advanced online version in Griffith Research Online.
    Subject
    Environmental sciences
    Publication URI
    http://hdl.handle.net/10072/399642
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander