Efficient Photocatalytic Hydrogen Peroxide Production over TiO2 Passivated by SnO2

View/ Open
File version
Version of Record (VoR)
Author(s)
Zuo, Guifu
Li, Bingdong
Guo, Zhaoliang
Wang, Liang
Yang, Fan
Hou, Weishu
Zhang, Songtao
Zong, Peixiao
Liu, Shanshan
Meng, Xianguang
Du, Yi
Wang, Tao
Roy, Vellaisamy AL
Griffith University Author(s)
Year published
2019
Metadata
Show full item recordAbstract
Photocatalysis provides an attractive strategy for synthesizing H2O2 at ambient condition. However, the photocatalytic synthesis of H2O2 is still limited due to the inefficiency of photocatalysts and decomposition of H2O2 during formation. Here, we report SnO2-TiO2 heterojunction photocatalysts for synthesizing H2O2 directly in aqueous solution. The SnO2 passivation suppresses the complexation and decomposition of H2O2 on TiO2. In addition, loading of Au cocatalyst on SnO2-TiO2 heterojunction further improves the production of H2O2. The in situ electron spin resonance study revealed that the formation of H2O2 is a stepwise ...
View more >Photocatalysis provides an attractive strategy for synthesizing H2O2 at ambient condition. However, the photocatalytic synthesis of H2O2 is still limited due to the inefficiency of photocatalysts and decomposition of H2O2 during formation. Here, we report SnO2-TiO2 heterojunction photocatalysts for synthesizing H2O2 directly in aqueous solution. The SnO2 passivation suppresses the complexation and decomposition of H2O2 on TiO2. In addition, loading of Au cocatalyst on SnO2-TiO2 heterojunction further improves the production of H2O2. The in situ electron spin resonance study revealed that the formation of H2O2 is a stepwise single electron oxygen reduction reaction (ORR) for Au and SnO2 modified TiO2 photocatalysts. We demonstrate that it is feasible to enhance H2O2 formation and suppress H2O2 decomposition by surface passivation of the H2O2-decomposition-sensitive photocatalysts.
View less >
View more >Photocatalysis provides an attractive strategy for synthesizing H2O2 at ambient condition. However, the photocatalytic synthesis of H2O2 is still limited due to the inefficiency of photocatalysts and decomposition of H2O2 during formation. Here, we report SnO2-TiO2 heterojunction photocatalysts for synthesizing H2O2 directly in aqueous solution. The SnO2 passivation suppresses the complexation and decomposition of H2O2 on TiO2. In addition, loading of Au cocatalyst on SnO2-TiO2 heterojunction further improves the production of H2O2. The in situ electron spin resonance study revealed that the formation of H2O2 is a stepwise single electron oxygen reduction reaction (ORR) for Au and SnO2 modified TiO2 photocatalysts. We demonstrate that it is feasible to enhance H2O2 formation and suppress H2O2 decomposition by surface passivation of the H2O2-decomposition-sensitive photocatalysts.
View less >
Journal Title
Catalysts
Volume
9
Issue
7
Copyright Statement
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Subject
Physical chemistry
Science & Technology
Physical Sciences
Chemistry
H2O2