• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Promoting photoreduction properties via synergetic utilization between plasmonic effect and highly active facet of BiOCl

    Author(s)
    Wang, Li
    Lv, Dongdong
    Yue, Zengji
    Zhu, He
    Wang, Liang
    Wang, Defa
    Xu, Xun
    Hao, Weichang
    Dou, Shi Xue
    Du, Yi
    Griffith University Author(s)
    Wang, Liang
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    Exploring highly efficient photocatalysts is an urgent task for achieving efficient solar-to-chemical conversion. Plasmonic effect is widely used in improving the photocatalytic properties via reducing the activation barrier for chemical reactions, enhancing the absorption of the photocatalysts or injecting the hot carriers into the photocatalysts from the plasmon metals. In this work, we design BiOCl-Ag-E with Ag loaded on the edge side of BiOCl. This hybrid structure takes the advantages of highly photocatalytic active (001) facet of BiOCl and the plasmonic effect. The plasmon metal is proposed to provide the (001) facets ...
    View more >
    Exploring highly efficient photocatalysts is an urgent task for achieving efficient solar-to-chemical conversion. Plasmonic effect is widely used in improving the photocatalytic properties via reducing the activation barrier for chemical reactions, enhancing the absorption of the photocatalysts or injecting the hot carriers into the photocatalysts from the plasmon metals. In this work, we design BiOCl-Ag-E with Ag loaded on the edge side of BiOCl. This hybrid structure takes the advantages of highly photocatalytic active (001) facet of BiOCl and the plasmonic effect. The plasmon metal is proposed to provide the (001) facets with more photogenerated charge carriers driving by the internal electric field, which is convinced by the photocurrent response and the detection of active species. Due to the accumulation of more negative charge carriers on (001) facet, BiOCl-Ag-E presents outstanding waste-water cleaning and CO2 photoreduction properties. The methodology of material design in this work paves the way for future design of efficient photocatalysts.
    View less >
    Journal Title
    Nano Energy
    Volume
    57
    DOI
    https://doi.org/10.1016/j.nanoen.2018.12.071
    Subject
    Macromolecular and materials chemistry
    Materials engineering
    Nanotechnology
    Science & Technology
    Physical Sciences
    Chemistry, Physical
    Nanoscience
    Publication URI
    http://hdl.handle.net/10072/399779
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander