Propagation of uncertainties in interpolated rainfields to runoff errors

View/ Open
File version
Accepted Manuscript (AM)
Author(s)
Gyasi-Agyei, Yeboah
Griffith University Author(s)
Year published
2019
Metadata
Show full item recordAbstract
Conditional daily rainfields were generated using collocated raingauge radar data by a kriging interpolation method, and disaggregated into hourly rainfields using variants of the method of fragments. A geographic information system (GIS)-based distributed rainfall–runoff model was used to convert the hourly rainfields into hydrographs. Using the complete radar rainfall as input, the rainfall–runoff model was calibrated based on storm events taken from nested catchments. Performance statistics were estimated by comparing the observed and the complete radar rainfall simulated hydrographs. Degradation in the hydrograph performance ...
View more >Conditional daily rainfields were generated using collocated raingauge radar data by a kriging interpolation method, and disaggregated into hourly rainfields using variants of the method of fragments. A geographic information system (GIS)-based distributed rainfall–runoff model was used to convert the hourly rainfields into hydrographs. Using the complete radar rainfall as input, the rainfall–runoff model was calibrated based on storm events taken from nested catchments. Performance statistics were estimated by comparing the observed and the complete radar rainfall simulated hydrographs. Degradation in the hydrograph performance statistics by the simulated hourly rainfields was used to identify runoff error propagation. Uncertainty in daily rainfall amounts alone caused higher errors in runoff (depth, peak, and time to peak) than those caused by uncertainties in the hourly proportions alone. However, the degradation, which reduced with runoff depth, caused by the combined uncertainties was not significantly different from that caused by the uncertainty of amounts alone.
View less >
View more >Conditional daily rainfields were generated using collocated raingauge radar data by a kriging interpolation method, and disaggregated into hourly rainfields using variants of the method of fragments. A geographic information system (GIS)-based distributed rainfall–runoff model was used to convert the hourly rainfields into hydrographs. Using the complete radar rainfall as input, the rainfall–runoff model was calibrated based on storm events taken from nested catchments. Performance statistics were estimated by comparing the observed and the complete radar rainfall simulated hydrographs. Degradation in the hydrograph performance statistics by the simulated hourly rainfields was used to identify runoff error propagation. Uncertainty in daily rainfall amounts alone caused higher errors in runoff (depth, peak, and time to peak) than those caused by uncertainties in the hourly proportions alone. However, the degradation, which reduced with runoff depth, caused by the combined uncertainties was not significantly different from that caused by the uncertainty of amounts alone.
View less >
Journal Title
Hydrological Sciences Journal
Volume
64
Issue
5
Copyright Statement
This is an Author's Accepted Manuscript of an article published in the Hydrological Sciences Journal, 64 (5), pp. 587-606, 04 Apr 2019, copyright Taylor & Francis, available online at: https://doi.org/10.1080/02626667.2019.1593989
Subject
Physical geography and environmental geoscience
Civil engineering
Environmental engineering
Science & Technology
Physical Sciences
Water Resources
rainfield
disaggregation