Implementation of quantum permutation algorithm with classical light

View/ Open
File version
Version of Record (VoR)
Author(s)
Zhang, Shihao
Li, Pengyun
Wang, Bo
Zeng, Qiang
Zhang, Xiangdong
Griffith University Author(s)
Year published
2019
Metadata
Show full item recordAbstract
We report the experimental implementation of quantum permutation algorithm using polarization and orbital angular momentum of the classical optical beam. The easy-handling optical setup to realize all eight cyclic permutation transformations for an input four-dimensional system has been constructed. The two-to-one speed-up ratio to determine the parity of each permutation has been demonstrated. Moreover, we have theoretically discussed the extension to the case with eight elements, and the limitations on the generalization of our proposal to higher-dimensional cases. Our scheme exhibits outstanding stability and demonstrates ...
View more >We report the experimental implementation of quantum permutation algorithm using polarization and orbital angular momentum of the classical optical beam. The easy-handling optical setup to realize all eight cyclic permutation transformations for an input four-dimensional system has been constructed. The two-to-one speed-up ratio to determine the parity of each permutation has been demonstrated. Moreover, we have theoretically discussed the extension to the case with eight elements, and the limitations on the generalization of our proposal to higher-dimensional cases. Our scheme exhibits outstanding stability and demonstrates that optical quantum computation is possible using classical states of light.
View less >
View more >We report the experimental implementation of quantum permutation algorithm using polarization and orbital angular momentum of the classical optical beam. The easy-handling optical setup to realize all eight cyclic permutation transformations for an input four-dimensional system has been constructed. The two-to-one speed-up ratio to determine the parity of each permutation has been demonstrated. Moreover, we have theoretically discussed the extension to the case with eight elements, and the limitations on the generalization of our proposal to higher-dimensional cases. Our scheme exhibits outstanding stability and demonstrates that optical quantum computation is possible using classical states of light.
View less >
Journal Title
Journal of Physics Communications
Volume
3
Issue
1
Copyright Statement
© 2019 The Author(s). Published by IOP Publishing Ltd. Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Subject
Nanotechnology