• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Citronamine A, an Antiplasmodial Isoquinoline Alkaloid from the Australian Marine Sponge Citronia astra

    Author(s)
    Prebble, Dale W
    Holland, Darren C
    Robertson, Luke P
    Avery, Vicky M
    Carroll, Anthony R
    Griffith University Author(s)
    Carroll, Anthony R.
    Avery, Vicky M.
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    Citronamine A (1), an isoquinoline alkaloid containing an unprecedented pentacyclic ring system, was isolated from the Australian marine sponge Citronia astra. Based on the combination of MS and NMR analyses and comparison of experimental and TDDFT calculated ECD spectra, the absolute structure of 1 was determined. Compound 1 displayed moderate activity against drug sensitive (3D7) and drug resistant (Dd2) strains of the parasite, Plasmodium falciparum, responsible for malaria.Citronamine A (1), an isoquinoline alkaloid containing an unprecedented pentacyclic ring system, was isolated from the Australian marine sponge Citronia astra. Based on the combination of MS and NMR analyses and comparison of experimental and TDDFT calculated ECD spectra, the absolute structure of 1 was determined. Compound 1 displayed moderate activity against drug sensitive (3D7) and drug resistant (Dd2) strains of the parasite, Plasmodium falciparum, responsible for malaria.
    View less >
    Journal Title
    Organic Letters
    DOI
    https://doi.org/10.1021/acs.orglett.0c03633
    Note
    This publication has been entered as an advanced online version in Griffith Research Online.
    Subject
    Chemical sciences
    Biological sciences
    Publication URI
    http://hdl.handle.net/10072/399895
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander