Show simple item record

dc.contributor.authorDinh, T
dc.contributor.authorNguyen, T
dc.contributor.authorFoisal, ARM
dc.contributor.authorPhan, H-P
dc.contributor.authorNguyen, T-K
dc.contributor.authorNguyen, N-T
dc.contributor.authorDao, DV
dc.date.accessioned2020-12-03T23:46:43Z
dc.date.available2020-12-03T23:46:43Z
dc.date.issued2020
dc.identifier.issn2375-2548
dc.identifier.doi10.1126/sciadv.aay2671
dc.identifier.urihttp://hdl.handle.net/10072/399933
dc.description.abstractThe thermal excitation, regulation, and detection of charge carriers in solid-state electronics have attracted great attention toward high-performance sensing applications but still face major challenges. Manipulating thermal excitation and transport of charge carriers in nanoheterostructures, we report a giant temperature sensing effect in semiconductor nanofilms via optoelectronic coupling, termed optothermotronics. A gradient of charge carriers in the nanofilms under nonuniform light illumination is coupled with an electric tuning current to enhance the performance of the thermal sensing effect. As a proof of concept, we used silicon carbide (SiC) nanofilms that form nanoheterostructures on silicon (Si). The sensing performance based on the thermal excitation of charge carriers in SiC is enhanced by at least 100 times through photon excitation, with a giant temperature coefficient of resistance (TCR) of up to -50%/K. Our findings could be used to substantially enhance the thermal sensing performance of solid-state electronics beyond the present sensing technologies.
dc.description.peerreviewedYes
dc.languageEnglish
dc.language.isoeng
dc.relation.ispartofpagefromeaay2671
dc.relation.ispartofissue22
dc.relation.ispartofjournalScience Advances
dc.relation.ispartofvolume6
dc.subject.fieldofresearchEngineering
dc.subject.fieldofresearchPhysical Sciences
dc.subject.fieldofresearchNanotechnology
dc.subject.fieldofresearchcode09
dc.subject.fieldofresearchcode02
dc.subject.fieldofresearchcode1007
dc.titleOptothermotronic effect as an ultrasensitive thermal sensing technology for solid-state electronics
dc.typeJournal article
dc.type.descriptionC1 - Articles
dcterms.bibliographicCitationDinh, T; Nguyen, T; Foisal, ARM; Phan, H-P; Nguyen, T-K; Nguyen, N-T; Dao, DV, Optothermotronic effect as an ultrasensitive thermal sensing technology for solid-state electronics, Science Advances, 2020, 6 (22), pp. eaay2671
dcterms.dateAccepted2020-03-13
dcterms.licensehttp://creativecommons.org/licenses/by-nc/4.0/
dc.date.updated2020-12-03T23:42:16Z
dc.description.versionVersion of Record (VoR)
gro.rights.copyright© 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S.Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
gro.hasfulltextFull Text
gro.griffith.authorDao, Dzung V.
gro.griffith.authorDinh, Toan K.
gro.griffith.authorNguyen, Viet T.
gro.griffith.authorMd Foisal, Abu R.
gro.griffith.authorPhan, Hoang Phuong
gro.griffith.authorNguyen, Nam-Trung
gro.griffith.authorNguyen Tuan, Khoa


Files in this item

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record