• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • SSP: Early prediction of sepsis using fully connected LSTM-CNN model

    Author(s)
    Rafiei, Alireza
    Rezaee, Alireza
    Hajati, Farshid
    Gheisari, Soheila
    Golzan, Mojtaba
    Griffith University Author(s)
    Hajati, Farshid
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    BACKGROUND: Sepsis is a life-threatening condition that occurs due to the body's reaction to infections, and it is a leading cause of morbidity and mortality in hospitals. Early prediction of sepsis onset facilitates early interventions that promote the survival of suspected patients. However, reliable and intelligent systems for predicting sepsis are scarce. METHODS: This paper presents a novel technique called Smart Sepsis Predictor (SSP) to predict sepsis onset in patients admitted to an intensive care unit (ICU). SSP is a deep neural network architecture that encompasses long short-term memory (LSTM), convolutional, and ...
    View more >
    BACKGROUND: Sepsis is a life-threatening condition that occurs due to the body's reaction to infections, and it is a leading cause of morbidity and mortality in hospitals. Early prediction of sepsis onset facilitates early interventions that promote the survival of suspected patients. However, reliable and intelligent systems for predicting sepsis are scarce. METHODS: This paper presents a novel technique called Smart Sepsis Predictor (SSP) to predict sepsis onset in patients admitted to an intensive care unit (ICU). SSP is a deep neural network architecture that encompasses long short-term memory (LSTM), convolutional, and fully connected layers to achieve early prediction of sepsis. SSP can work in two modes; Mode 1 uses demographic data and vital signs, and Mode 2 uses laboratory test results in addition to demographic data and vital signs. To evaluate SSP, we have used the 2019 PhysioNet/CinC Challenge dataset, which includes the records of 40,366 patients admitted to the ICU. RESULTS: To compare SSP with existing state-of-the-art methods, we have measured the accuracy of the SSP in 4-, 8-, and 12-h prediction windows using publicly available data. Our results show that the SSP performance in Mode 1 and Mode 2 is much higher than existing methods, achieving an area under the receiver operating characteristic curve (AUROC) of 0.89 and 0.92, 0.88 and 0.87, and 0.86 and 0.84 for 4 h, 8 h, and 12 h before sepsis onset, respectively. CONCLUSIONS: Using ICU data, sepsis onset can be predicted up to 12 h in advance. Our findings offer an early solution for mitigating the risk of sepsis onset.
    View less >
    Journal Title
    Computers in Biology and Medicine
    Volume
    128
    DOI
    https://doi.org/10.1016/j.compbiomed.2020.104110
    Subject
    Engineering
    Biomedical and clinical sciences
    Clinical decision support systems
    Deep learning
    Early prediction
    Electronic health records
    Medical informatic
    Publication URI
    http://hdl.handle.net/10072/399994
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander