• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Optimising non-invasive brain-computer interface systems for free communication between naïve human participants

    Thumbnail
    View/Open
    Painter440794-Published.pdf (4.914Mb)
    File version
    Version of Record (VoR)
    Author(s)
    Renton, Angela I
    Mattingley, Jason B
    Painter, David R
    Griffith University Author(s)
    Painter, David
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    Free communication is one of the cornerstones of modern civilisation. While manual keyboards currently allow us to interface with computers and manifest our thoughts, a next frontier is communication without manual input. Brain-computer interface (BCI) spellers often achieve this by decoding patterns of neural activity as users attend to flickering keyboard displays. To date, the highest performing spellers report typing rates of ~10.00 words/minute. While impressive, these rates are typically calculated for experienced users repetitively typing single phrases. It is therefore not clear whether naïve users are able to achieve ...
    View more >
    Free communication is one of the cornerstones of modern civilisation. While manual keyboards currently allow us to interface with computers and manifest our thoughts, a next frontier is communication without manual input. Brain-computer interface (BCI) spellers often achieve this by decoding patterns of neural activity as users attend to flickering keyboard displays. To date, the highest performing spellers report typing rates of ~10.00 words/minute. While impressive, these rates are typically calculated for experienced users repetitively typing single phrases. It is therefore not clear whether naïve users are able to achieve such high rates with the added cognitive load of genuine free communication, which involves continuously generating and spelling novel words and phrases. In two experiments, we developed an open-source, high-performance, non-invasive BCI speller and examined its feasibility for free communication. The BCI speller required users to focus their visual attention on a flickering keyboard display, thereby producing unique cortical activity patterns for each key, which were decoded using filter-bank canonical correlation analysis. In Experiment 1, we tested whether seventeen naïve users could maintain rapid typing during prompted free word association. We found that information transfer rates were indeed slower during this free communication task than during typing of a cued character sequence. In Experiment 2, we further evaluated the speller’s efficacy for free communication by developing a messaging interface, allowing users to engage in free conversation. The results showed that free communication was possible, but that information transfer was reduced by voluntary textual corrections and turn-taking during conversation. We evaluated a number of factors affecting the suitability of BCI spellers for free communication, and make specific recommendations for improving classification accuracy and usability. Overall, we found that developing a BCI speller for free communication requires a focus on usability over reduced character selection time, and as such, future performance appraisals should be based on genuine free communication scenarios.
    View less >
    Journal Title
    Scientific Reports
    Volume
    9
    Issue
    1
    DOI
    https://doi.org/10.1038/s41598-019-55166-y
    Copyright Statement
    © The Author(s) 2019. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
    Subject
    Communications engineering
    Science & Technology
    Multidisciplinary Sciences
    Science & Technology - Other Topics
    EEG
    Publication URI
    http://hdl.handle.net/10072/400009
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander