• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Tibialis anterior tendinous tissue plays a key role in energy absorption during human walking

    Author(s)
    Maharaj, Jayishni N
    Cresswell, Andrew G
    Lichtwark, Glen A
    Griffith University Author(s)
    Maharaj, Jayishni N.
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    The elastic tendinous tissues of distal lower limb muscles can improve the economy of walking and running, amplify the power generated by a muscle and absorb energy. This paper explores the behaviour of the tibialis anterior (TA) muscle and its tendinous tissue during gait, as it absorbs energy during contact and controls foot position during swing. Simultaneous measurements of ultrasound, surface electromyography and 3D motion capture with musculoskeletal modelling from 12 healthy participants were recorded as they walked at preferred and fast walking speeds. We quantified the length changes and velocities of the TA ...
    View more >
    The elastic tendinous tissues of distal lower limb muscles can improve the economy of walking and running, amplify the power generated by a muscle and absorb energy. This paper explores the behaviour of the tibialis anterior (TA) muscle and its tendinous tissue during gait, as it absorbs energy during contact and controls foot position during swing. Simultaneous measurements of ultrasound, surface electromyography and 3D motion capture with musculoskeletal modelling from 12 healthy participants were recorded as they walked at preferred and fast walking speeds. We quantified the length changes and velocities of the TA muscle–tendon unit (MTU) and its fascicles across the stride at each speed. Fascicle length changes and velocities were relatively consistent across speeds, although the magnitude of fascicle length change differed between the deep and superficial regions. At contact, when the TA is actively generating force, the fascicles remained relatively isometric as the MTU actively lengthened, presumably stretching the TA tendinous tissue and absorbing energy. This potentially protects the muscle fibres from damage during weight acceptance and allows energy to be returned to the system later in the stride. During early swing, the fascicles and MTU both actively shortened to dorsiflex the foot, clearing the toes from the ground; however, at the fast walking velocity, the majority of shortening occurred through tendinous tissue recoil, highlighting its role in accelerating ankle dorsiflexion to power rapid foot clearance in swing.
    View less >
    Journal Title
    Journal of Experimental Biology
    Volume
    222
    Issue
    11
    DOI
    https://doi.org/10.1242/jeb.191247
    Subject
    Biological sciences
    Biomedical and clinical sciences
    Science & Technology
    Life Sciences & Biomedicine
    Biology
    Life Sciences & Biomedicine - Other Topics
    Fascicle
    Publication URI
    http://hdl.handle.net/10072/400072
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander