• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Particle Swarm Optimization Variants for Solving Geotechnical Problems: Review and Comparative Analysis

    Author(s)
    Kashani, AR
    Chiong, R
    Mirjalili, S
    Gandomi, AH
    Griffith University Author(s)
    Mirjalili, Seyedali
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    Optimization techniques have drawn much attention for solving geotechnical engineering problems in recent years. Particle swarm optimization (PSO) is one of the most widely used population-based optimizers with a wide range of applications. In this paper, we first provide a detailed review of applications of PSO on different geotechnical problems. Then, we present a comprehensive computational study using several variants of PSO to solve three specific geotechnical engineering benchmark problems: the retaining wall, shallow footing, and slope stability. Through the computational study, we aim to better understand the algorithm ...
    View more >
    Optimization techniques have drawn much attention for solving geotechnical engineering problems in recent years. Particle swarm optimization (PSO) is one of the most widely used population-based optimizers with a wide range of applications. In this paper, we first provide a detailed review of applications of PSO on different geotechnical problems. Then, we present a comprehensive computational study using several variants of PSO to solve three specific geotechnical engineering benchmark problems: the retaining wall, shallow footing, and slope stability. Through the computational study, we aim to better understand the algorithm behavior, in particular on how to balance exploratory and exploitative mechanisms in these PSO variants. Experimental results show that, although there is no universal strategy to enhance the performance of PSO for all the problems tackled, accuracies for most of the PSO variants are significantly higher compared to the original PSO in a majority of cases.
    View less >
    Journal Title
    Archives of Computational Methods in Engineering
    DOI
    https://doi.org/10.1007/s11831-020-09442-0
    Note
    This publication has been entered as an advanced online version in Griffith Research Online.
    Subject
    Mathematical sciences
    Engineering
    Publication URI
    http://hdl.handle.net/10072/400123
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander