• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Benchmarks for dynamic multi-objective optimisation algorithms

    Author(s)
    Helbig, M
    Engelbrecht, AP
    Griffith University Author(s)
    Helbig, Mardé
    Year published
    2014
    Metadata
    Show full item record
    Abstract
    Algorithms that solve Dynamic Multi-Objective Optimisation Problems (DMOOPs) should be tested on benchmark functions to determine whether the algorithm can overcome specific difficulties that can occur in real-world problems. However, for Dynamic Multi-Objective Optimisation (DMOO), no standard benchmark functions are used. A number of DMOOPs have been proposed in recent years. However, no comprehensive overview of DMOOPs exist in the literature. Therefore, choosing which benchmark functions to use is not a trivial task. This article seeks to address this gap in the DMOO literature by providing a comprehensive overview of ...
    View more >
    Algorithms that solve Dynamic Multi-Objective Optimisation Problems (DMOOPs) should be tested on benchmark functions to determine whether the algorithm can overcome specific difficulties that can occur in real-world problems. However, for Dynamic Multi-Objective Optimisation (DMOO), no standard benchmark functions are used. A number of DMOOPs have been proposed in recent years. However, no comprehensive overview of DMOOPs exist in the literature. Therefore, choosing which benchmark functions to use is not a trivial task. This article seeks to address this gap in the DMOO literature by providing a comprehensive overview of proposed DMOOPs, and proposing characteristics that an ideal DMOO benchmark function suite should exhibit. In addition, DMOOPs are proposed for each characteristic. Shortcomings of current DMOOPs that do not address certain characteristics of an ideal benchmark suite are highlighted. These identified shortcomings are addressed by proposing new DMOO benchmark functions with complicated Pareto-Optimal Sets (POSs), and approaches to develop DMOOPs with either an isolated or deceptive Pareto-Optimal Front (POF). In addition, DMOO application areas and real-world DMOOPs are discussed.
    View less >
    Journal Title
    Computing Surveys
    Volume
    46
    Issue
    3
    DOI
    https://doi.org/10.1145/2517649
    Subject
    Information and computing sciences
    Science & Technology
    Technology
    Computer Science, Theory & Methods
    Computer Science
    Measurement
    Publication URI
    http://hdl.handle.net/10072/400133
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander