• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Co-located (multi-user) virtual rehabilitation of acquired brain injury: feasibility of the Resonance system for upper-limb training

    Author(s)
    Rogers, JM
    Mumford, N
    Caeyenberghs, K
    Richards, H
    Nuijen, N
    Steenbergen, B
    Williams, G
    Shum, DHK
    Duckworth, J
    Amos, N
    Wilson, PH
    Griffith University Author(s)
    Shum, David
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    Upper-limb virtual rehabilitation (VR) in adult acquired brain injury (ABI) is based largely on systems administered on a one-to-one basis. Multi-user interaction between co-located participants may offer advantages over single-user methods. The present study examined the feasibility of deploying a co-located VR system (Resonance) in a clinical setting. Following a baselining period, 5 patients with ABI completed 12 Resonance sessions over 4–6 weeks. Feasibility criteria included recruitment, intervention delivery, attrition, user experience, and suitability of outcome measures. Individual participant motor proficiency (box ...
    View more >
    Upper-limb virtual rehabilitation (VR) in adult acquired brain injury (ABI) is based largely on systems administered on a one-to-one basis. Multi-user interaction between co-located participants may offer advantages over single-user methods. The present study examined the feasibility of deploying a co-located VR system (Resonance) in a clinical setting. Following a baselining period, 5 patients with ABI completed 12 Resonance sessions over 4–6 weeks. Feasibility criteria included recruitment, intervention delivery, attrition, user experience, and suitability of outcome measures. Individual participant motor proficiency (box and blocks task) was examined using a time-series analysis with reliable change indices and curve fitting. All feasibility criteria were satisfied, with positive reports of user experience. Repeated collection of outcome measures was successfully integrated into the training schedule. Time-series analysis was successfully conducted, providing a detailed account of individual training-related change. Within a clinical setting, it was feasible to deliver Resonance and regularly monitor motor function. User feedback regarding the co-located VR intervention was generally positive, but expectations regarding the level of immersion may need to be managed. Individual time-series analysis is recommended as an adjunct to group-based analysis in future VR research. These findings can inform the design of a clinical trial.
    View less >
    Journal Title
    Virtual Reality
    DOI
    https://doi.org/10.1007/s10055-020-00486-y
    Note
    This publication has been entered into Griffith Research Online as an Advanced Online Version.
    Subject
    Artificial intelligence
    Geomatic engineering
    Cognitive and computational psychology
    Publication URI
    http://hdl.handle.net/10072/400148
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander