• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Three-dimensional visualization and analysis of flowing droplets in microchannels using real-time quantitative phase microscopy

    Thumbnail
    View/Open
    Nguyen454688Accepted.pdf (1.439Mb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Luo, Yingdong
    Yang, Jinwu
    Zheng, Xinqi
    Wang, Jianjun
    Tu, Xin
    Che, Zhizhao
    Fang, Jiakun
    Xi, Lei
    Nguyen, Nam-Trung
    Song, Chaolong
    Griffith University Author(s)
    Nguyen, Nam-Trung
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    Recent years have witnessed the development of droplet-based microfluidics as a useful and effective tool for high-throughput analysis in biological, chemical and environmental sciences. Despite the flourishing development of droplet manipulation techniques, only a few methods allow for label-free and quantitative inspection of flowing droplets in microchannels in real-time and in three dimensions (3-D). In this work, we propose and demonstrate the application of a real-time quantitative phase microscopy (RT-QPM) technique for 3-D visualization of droplets, and also for full-field and label-free measurement of analyte ...
    View more >
    Recent years have witnessed the development of droplet-based microfluidics as a useful and effective tool for high-throughput analysis in biological, chemical and environmental sciences. Despite the flourishing development of droplet manipulation techniques, only a few methods allow for label-free and quantitative inspection of flowing droplets in microchannels in real-time and in three dimensions (3-D). In this work, we propose and demonstrate the application of a real-time quantitative phase microscopy (RT-QPM) technique for 3-D visualization of droplets, and also for full-field and label-free measurement of analyte concentration distribution in the droplets. The phase imaging system consists of a linear-CCD-based holographic microscopy configuration and an optofluidic phase-shifting element, which can be used for retrieving quantitative phase maps of flowing objects in the microchannels with a temporal resolution only limited to the frame rate of the CCD camera. To demonstrate the capabilities of the proposed imaging technique, we have experimentally validated the 3-D image reconstruction of the droplets generated in squeezing and dripping regimes and quantitatively investigated the volumetric and morphological variation of droplets as well as droplet parameters related to the depth direction under different flow conditions. We also demonstrated the feasibility of using this technique, as a refractive index sensor, for in-line quantitative measurement of carbamide analyte concentration within the flowing droplets.
    View less >
    Journal Title
    Lab on a Chip
    DOI
    https://doi.org/10.1039/d0lc00917b
    Copyright Statement
    © 2020 Royal Society of Chemistry. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal website for access to the definitive, published version.
    Subject
    Chemical sciences
    Engineering
    Publication URI
    http://hdl.handle.net/10072/400168
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander