• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • No-Reference Image Blur Assessment Based on Response Function of Singular Values

    Thumbnail
    View/Open
    Zhang437348-Published.pdf (2.362Mb)
    File version
    Version of Record (VoR)
    Author(s)
    Zhang, Shanqing
    Li, Pengcheng
    Xu, Xianghua
    Li, Li
    Chang, Ching-Chun
    Griffith University Author(s)
    Zhang, Shanqing
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    Blur is an important factor affecting the image quality. This paper presents an efficient no-reference (NR) image blur assessment method based on a response function of singular values. For an image, the grayscale image is computed to the acquire spatial information. In the meantime, the gradient map is computed to acquire the shape information, and the saliency map can be obtained by using scale-invariant feature transform (SIFT). Then, the grayscale image, the gradient map, and the saliency map are divided into blocks of the same size. The blocks of the gradient map are converted into discrete cosine transform (DCT) ...
    View more >
    Blur is an important factor affecting the image quality. This paper presents an efficient no-reference (NR) image blur assessment method based on a response function of singular values. For an image, the grayscale image is computed to the acquire spatial information. In the meantime, the gradient map is computed to acquire the shape information, and the saliency map can be obtained by using scale-invariant feature transform (SIFT). Then, the grayscale image, the gradient map, and the saliency map are divided into blocks of the same size. The blocks of the gradient map are converted into discrete cosine transform (DCT) coefficients, from which the response function of singular values (RFSV) are generated. The sum of the RFSV are then utilized to characterize the image blur. The variance of the grayscale image and the DCT domain entropy of the gradient map are used to reduce the impact of the image content. The SIFT-dependent weights are calculated in the saliency map, which are assigned to the image blocks. Finally, the blur score is the normalized sum of the RFSV. Extensive experiments are conducted on four synthetic databases and two real blur databases. The experimental results indicate that the blur scores produced by our method are highly correlated with the subjective evaluations. Furthermore, the proposed method is superior to six state-of-the-art methods.
    View less >
    Journal Title
    Symmetry
    Volume
    10
    Issue
    8
    DOI
    https://doi.org/10.3390/sym10080304
    Copyright Statement
    © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    Subject
    Applied computing
    Image processing
    Science & Technology
    Multidisciplinary Sciences
    Science & Technology - Other Topics
    image blur assessment
    gradient
    Publication URI
    http://hdl.handle.net/10072/400187
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander