• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Versatile synthetic route to carbocyclic N-Acetylneuraminic acid and its derivatives

    Author(s)
    Mohan, S
    Thompson, JR
    Pinto, BM
    Bennet, AJ
    Griffith University Author(s)
    Pinto, Mario M.
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    Sialic acid (N-acetylneuraminic acid) is a carbohydrate that possess a nine carbon backbone, and it is often found at the termini of glycoconjugates in biological systems. Because of this prominence many syntheses have reported routes to sialic acid and many of its derivatives. Most of these compounds retain the endocyclic oxygen atom that becomes part of the ketal glycosidic linkage that joins sialic acid to the penultimate residue in the glycoconjugate. With respect to carba-sialic acid (replacement of the ring oxygen atom with a methylene group) a single synthesis has been reported (Ogawa et al. (Carbohydr. Res., 1995, ...
    View more >
    Sialic acid (N-acetylneuraminic acid) is a carbohydrate that possess a nine carbon backbone, and it is often found at the termini of glycoconjugates in biological systems. Because of this prominence many syntheses have reported routes to sialic acid and many of its derivatives. Most of these compounds retain the endocyclic oxygen atom that becomes part of the ketal glycosidic linkage that joins sialic acid to the penultimate residue in the glycoconjugate. With respect to carba-sialic acid (replacement of the ring oxygen atom with a methylene group) a single synthesis has been reported (Ogawa et al. (Carbohydr. Res., 1995, 269, 53–78) in 30 steps and 0.5% yield. The current report details a robust synthesis of 6a-carba-α-D-sialic acid that involves 18 steps and give a 5% yield using D-quinic acid as the starting material.
    View less >
    Journal Title
    Tetrahedron
    Volume
    74
    Issue
    38
    DOI
    https://doi.org/10.1016/j.tet.2018.05.065
    Subject
    Medicinal and biomolecular chemistry
    Organic chemistry
    Publication URI
    http://hdl.handle.net/10072/400239
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander