Magnetic nanomaterial–based electrochemical biosensors for the detection of diverse circulating cancer biomarkers
Abstract
Electrochemical biosensors are highly compatible with modern advancements in magnetic nanomaterials. In particular, the versatile nature of magnetic nanomaterials as a universal platform for selective isolation of diverse forms of cancer biomarkers in body circulation, is highly synergistic with electrochemical biosensors for elevating biosensing performance to unprecedented levels. Such diverse circulating target biomolecules include cell surface proteins of circulating tumor cells and extracellular vesicles (EVs), as well as circulating tumor nucleic acids (i.e. ctDNA/ctRNA). This focussed review serves to discuss the ...
View more >Electrochemical biosensors are highly compatible with modern advancements in magnetic nanomaterials. In particular, the versatile nature of magnetic nanomaterials as a universal platform for selective isolation of diverse forms of cancer biomarkers in body circulation, is highly synergistic with electrochemical biosensors for elevating biosensing performance to unprecedented levels. Such diverse circulating target biomolecules include cell surface proteins of circulating tumor cells and extracellular vesicles (EVs), as well as circulating tumor nucleic acids (i.e. ctDNA/ctRNA). This focussed review serves to discuss the latest work in the fields of magnetic nanomaterials and electrochemistry to tackle existing analysis challenges of diverse circulating biomarkers in cancer.
View less >
View more >Electrochemical biosensors are highly compatible with modern advancements in magnetic nanomaterials. In particular, the versatile nature of magnetic nanomaterials as a universal platform for selective isolation of diverse forms of cancer biomarkers in body circulation, is highly synergistic with electrochemical biosensors for elevating biosensing performance to unprecedented levels. Such diverse circulating target biomolecules include cell surface proteins of circulating tumor cells and extracellular vesicles (EVs), as well as circulating tumor nucleic acids (i.e. ctDNA/ctRNA). This focussed review serves to discuss the latest work in the fields of magnetic nanomaterials and electrochemistry to tackle existing analysis challenges of diverse circulating biomarkers in cancer.
View less >
Journal Title
Current Opinion in Electrochemistry
Volume
25
Subject
Analytical chemistry
Electrochemistry