• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Increasing anthropogenic salinisation leads to declines in community diversity, functional diversity and trophic links in mountain streams

    Author(s)
    Zhao, Q
    Zhang, Y
    Guo, F
    Leigh, C
    Jia, X
    Griffith University Author(s)
    Leigh, Catherine
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    Anthropogenic salinisation is becoming an increasing global issue for freshwater ecosystems, leading to serious biodiversity loss and ecosystem degradation. While the effect of anthropogenic salinisation on freshwater ecosystems has been intensively studied in recent years, most studies focus on salinisation effects on the individual or single groups of organisms without considering the effect on the ecosystem levels, such as diversity and trophic links. Therefore, we conducted a long-term field survey from May 2009 to August 2016 at 405 sites in northeast China to investigate the effect of a gradient of salinisation on ...
    View more >
    Anthropogenic salinisation is becoming an increasing global issue for freshwater ecosystems, leading to serious biodiversity loss and ecosystem degradation. While the effect of anthropogenic salinisation on freshwater ecosystems has been intensively studied in recent years, most studies focus on salinisation effects on the individual or single groups of organisms without considering the effect on the ecosystem levels, such as diversity and trophic links. Therefore, we conducted a long-term field survey from May 2009 to August 2016 at 405 sites in northeast China to investigate the effect of a gradient of salinisation on community diversity, functional diversity and trophic links in mountain streams. Samples of water chemistry, periphyton, macroinvertebrates and fish were collected. Our results showed that as anthropogenic salinisation increased, Ca2+, Mg2+, HCO3− and SO42− exhibited significant increases (p < 0.05). These increased ions caused decreases in taxonomic evenness and biotic integrity, but an increase in the beta diversity for periphyton and macroinvertebrates, and a slight increase in the evenness of fish. The increased salinisation resulted in the extirpation of salt-sensitive taxa and declines in macroinvertebrate functional richness and functional redundancy, which consequently led to simplified trophic links. Our results implied that if salt-tolerant taxa in high salinisation sites were not functionally redundant with less tolerant taxa, alterations of their functional composition probably decrease the stability of ecosystem functions. Overall, our study suggests that the ongoing anthropogenic salinisation is posing serious threats to biodiversity and trophic links in river ecosystems, and should be considered in future river restoration and biodiversity conservation.
    View less >
    Journal Title
    Chemosphere
    Volume
    263
    DOI
    https://doi.org/10.1016/j.chemosphere.2020.127994
    Subject
    Freshwater Ecology
    Biodiversity
    Ecosystem function
    Fish
    Functional diversity
    Water chemistry
    Publication URI
    http://hdl.handle.net/10072/400336
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander