• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Improving aggregate stability and hydraulic properties of Sandy loam soil by applying polyacrylamide polymer

    Author(s)
    Albalasmeh, Ammar A
    Hamdan, Enas H
    Gharaibeh, Mamoun A
    Hanandeh, Ali El
    Griffith University Author(s)
    El Hanandeh, Ali
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    Improving soil properties, especially in arid and semiarid regions, is an urgent need for sustainable food production. This study aims to evaluate the effect of applying two types of anionic polyacrylamide polymers (PAMs) with different molecular weights on: (1) soil aggregate stability, (2) infiltration rate and (3) saturated hydraulic conductivity of sandy loam soil and introduce a novel modelling approach to predict the effect of PAM addition on the mentioned soil properties. Polymers were applied at five different concentrations; 0, 100, 250, 500 and 1000 mg L−1. Direct positive relations between the concentrations of ...
    View more >
    Improving soil properties, especially in arid and semiarid regions, is an urgent need for sustainable food production. This study aims to evaluate the effect of applying two types of anionic polyacrylamide polymers (PAMs) with different molecular weights on: (1) soil aggregate stability, (2) infiltration rate and (3) saturated hydraulic conductivity of sandy loam soil and introduce a novel modelling approach to predict the effect of PAM addition on the mentioned soil properties. Polymers were applied at five different concentrations; 0, 100, 250, 500 and 1000 mg L−1. Direct positive relations between the concentrations of PAM (low and high molecular weight) and saturated hydraulic conductivity and infiltration rate were observed. Nevertheless, the relations were more pronounced in case of low molecular weight PAM. The difference between the effect of the two PAMs on infiltration rate was statistically significant at α = 0.05. On the other hand, the differences were not significant except for the 1000 mg L−1 concentration in case of saturated hydraulic conductivity. Meanwhile, concentration has an effect on increasing soil aggregate stability only in case of low molecular weight PAM. At the concentration 1000 mg L-1 of low molecular weight PAM, aggregate stability and saturated hydraulic conductivity increased 3-fold while infiltration rate increased by more than 7-fold compared to the control. It is hypothesized that the change in the mentioned properties is correlated to the amount of PAM adsorbed by the soil and hence they can be used as surrogate parameters of adsorption. Modified versions of the Langmuir and Freundlich isotherm equations were used to model the change in aggregate stability and saturated hydraulic conductivity in response to the PAM concentration. The pseudo-first and second kinetics models were applied to predict the change in infiltration rate. The models showed excellent fit to the experimental data, thus supporting our hypothesis. The results suggest that low molecular weight PAM is more efficient in improving the physical properties of sandy loam soil. The modelling approach presented in this work may be extended to other types of soil. Other isotherm models may be used to predict the response of soil to PAM concentration where the Langmuir or Freundlich isotherms do not apply. This modelling approach provides land managers with a decision support tool to optimize PAM application.
    View less >
    Journal Title
    Soil and Tillage Research
    Volume
    206
    DOI
    https://doi.org/10.1016/j.still.2020.104821
    Subject
    Environmental sciences
    Biological sciences
    Agricultural, veterinary and food sciences
    Publication URI
    http://hdl.handle.net/10072/400421
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander