• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Dual subspace discriminative projection learning

    Author(s)
    Belous, G
    Busch, A
    Gao, Y
    Griffith University Author(s)
    Busch, Andrew W.
    Gao, Yongsheng
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    In this paper, we propose a dual subspace discriminative projection learning (DSDPL) framework for multi-category image classification. Our approach reflects the notion that images are composed of class-shared information, class-specific information, and sparse noise. Unlike traditional subspace learning methods, DSDPL serves to decompose original high dimensional data, via learned projection matrices, into class-shared and class-specific subspaces. The learned projection matrices are jointly constrained with l2,1 sparse norm and LDA terms while the reconstructive properties of DSDPL reduce information loss, leading to greater ...
    View more >
    In this paper, we propose a dual subspace discriminative projection learning (DSDPL) framework for multi-category image classification. Our approach reflects the notion that images are composed of class-shared information, class-specific information, and sparse noise. Unlike traditional subspace learning methods, DSDPL serves to decompose original high dimensional data, via learned projection matrices, into class-shared and class-specific subspaces. The learned projection matrices are jointly constrained with l2,1 sparse norm and LDA terms while the reconstructive properties of DSDPL reduce information loss, leading to greater stability within low dimensional subspaces. Regression-based terms are also included to facilitate a more robust classification approach, using extracted class-specific features for better classification. Our approach is examined on five different datasets for face, object and scene classifications. Experimental results demonstrate not only the superiority and versatility of DSDPL over current benchmark approaches, but also a more robust classification approach with low sample size training data.
    View less >
    Journal Title
    Pattern Recognition
    Volume
    111
    DOI
    https://doi.org/10.1016/j.patcog.2020.107581
    Subject
    Artificial intelligence
    Publication URI
    http://hdl.handle.net/10072/400429
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander