• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Machine learning approach to understand regional disparity of residential solar adoption in Australia

    Author(s)
    Lan, H
    Gou, Z
    Lu, Y
    Griffith University Author(s)
    Gou, Zhonghua
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    Although Australia has been successful in increasing the total number of residential solar photovoltaic (PV) panels, the disparity of PV adoption among regions has raised concerns about energy justice. To understand the regional difference of PV adoption in relation to the socioeconomic variance, this research introduced a machine learning approach, selected the Conditional Inference Trees algorithm and examined the residential PV installations in 2658 postcode areas covering six states of Australia. The study identified 18 scenarios based on 11 socioeconomic factors that explained the regional difference of residential PV ...
    View more >
    Although Australia has been successful in increasing the total number of residential solar photovoltaic (PV) panels, the disparity of PV adoption among regions has raised concerns about energy justice. To understand the regional difference of PV adoption in relation to the socioeconomic variance, this research introduced a machine learning approach, selected the Conditional Inference Trees algorithm and examined the residential PV installations in 2658 postcode areas covering six states of Australia. The study identified 18 scenarios based on 11 socioeconomic factors that explained the regional difference of residential PV adoption rate. A simple scenario was found for the region with a low density of population where the sparse population distribution is unadventurous for promoting PV among households and the PV adoption rate was reasonably low. The scenario became complex for the region with a high density of population, especially where the high density concurs with a high income; the concurrence was associated with many apartments and consequently a low adoption rate due to the lack of rooftop space. The most complex scenario was found for the region with a medium density of population where more socioeconomic factors interplayed and conditioned each other to explain the PV adoption variance. Generally, a high adoption rate was found for the region with a medium density of population and housing and a middle level of income. The complexity of the socioeconomic factors for explaining the regional difference of PV adoption should be addressed in search of more sophisticated energy policies.
    View less >
    Journal Title
    Renewable and Sustainable Energy Reviews
    Volume
    136
    DOI
    https://doi.org/10.1016/j.rser.2020.110458
    Subject
    Engineering
    Publication URI
    http://hdl.handle.net/10072/400437
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander