• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • The BDD-Based Dynamic A* Algorithm for Real-Time Replanning

    Author(s)
    Xu, Yanyan
    Yue, Weiya
    Su, Kaile
    Griffith University Author(s)
    Su, Kaile
    Year published
    2009
    Metadata
    Show full item record
    Abstract
    Finding optimal path through a graph efficiently is central to many problems, including route planning for a mobile robot. BDD-based incremental heuristic search method uses heuristics to focus their search and reuses BDD-based information from previous searches to find solutions to series of similar search problems much faster than solving each search problem from scratch. In this paper, we apply BDD-based incremental heuristic search to robot navigation in unknown terrain, including goal-directed navigation in unknown terrain and mapping of unknown terrain. The resulting BDD-based dynamic A* (BDDD*) algorithm is capable ...
    View more >
    Finding optimal path through a graph efficiently is central to many problems, including route planning for a mobile robot. BDD-based incremental heuristic search method uses heuristics to focus their search and reuses BDD-based information from previous searches to find solutions to series of similar search problems much faster than solving each search problem from scratch. In this paper, we apply BDD-based incremental heuristic search to robot navigation in unknown terrain, including goal-directed navigation in unknown terrain and mapping of unknown terrain. The resulting BDD-based dynamic A* (BDDD*) algorithm is capable of planning paths in unknown, partially known and changing environments in an efficient, optimal, and complete manner. We present properties about BDDD* and demonstrate experimentally the advantages of combining BDD-based incremental and heuristic search for the applications studied. We believe that our experimental results will make BDD-based D* like replanning algorithms more popular and enable robotics researchers to adapt them to additional applications.
    View less >
    Conference Title
    Third International Workshop, FAW 2009, Frontiers in Algorithmics
    DOI
    https://doi.org/10.1007/978-3-642-02270-8_28
    Subject
    Artificial intelligence not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/40044
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander