• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Soil type regulates carbon and nitrogen stoichiometry and mineralization following biochar or nitrogen addition

    Author(s)
    Wang, Huanhuan
    Ren, Tianbao
    Müller, Karin
    Van Zwieten, Lukas
    Wang, Hailong
    Feng, Huilin
    Xu, Chensheng
    Yun, Fei
    Ji, Xiaoming
    Yin, Quanyu
    Shi, Hongzhi
    Liu, Guoshun
    Griffith University Author(s)
    Van Zwieten, Lukas
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    Most studies on the effects of biochar and fertilizer on soil carbon (C) and nitrogen (N) mineralization, and microbial C and N content, are restricted to a single soil type, limiting our understanding of the interactions between these factors and microbial functions. To address this paucity in knowledge, we undertook a 3-year experiment using four contrasting soils to assess the role of peanut shell biochar and fertilizer on C and N mineralization, microbial C and N, and N stoichiometry. Across all four soils, biochar significantly (P < 0.05) increased soil carbon mineralization (Cmin) and nitrogen mineralization (Nmin) ...
    View more >
    Most studies on the effects of biochar and fertilizer on soil carbon (C) and nitrogen (N) mineralization, and microbial C and N content, are restricted to a single soil type, limiting our understanding of the interactions between these factors and microbial functions. To address this paucity in knowledge, we undertook a 3-year experiment using four contrasting soils to assess the role of peanut shell biochar and fertilizer on C and N mineralization, microbial C and N, and N stoichiometry. Across all four soils, biochar significantly (P < 0.05) increased soil carbon mineralization (Cmin) and nitrogen mineralization (Nmin) over three years compared to fertilizer and the control. Biochar also increased total C (Csoil) across the four soils in year 1, with the Fluvisol recording greater total C in year 2 and Phaeozem having greater total C in year 3. Biochar resulted in a higher microbial biomass C (Cmic), total N (Nsoil) and microbial biomass N (Nmic); the degree of change was closely related to Csoil and Nsoil. There was a positive correlation between Cmic:Nmic and Csoil:Nsoil; while Csoil and Cmic increased following amendment with biochar, which reduced the soil C and N stoichiometric imbalance (Nimb) caused by the increase in the C to N ratio. However, fertilizer exacerbated the imbalance of soil C and N stoichiometry. Fertilizer also reduced the Csoil:Nsoil and Cmic:Nmic ratios. Soil pH had a positive correlation with Csoil, Cmic, Nmic, Cmin, Nmin, Csoil:Nsoil, Cmic:Nmic, and biochar increases this correlation. The soil pH was negatively correlated with Cimb:Nimb and Nsoil. Fertilizer was positively correlated Cimb:Nimb and Nsoil. In contrast, fertilizer N application lowered microbial biomass C:N. We conclude that biochar reduces the imbalance of soil C and N stoichiometry, whereas fertilizer increased this imbalance. Biochar had a greater impact on C and N in soils with a lower pH.
    View less >
    Journal Title
    Science of The Total Environment
    Volume
    753
    DOI
    https://doi.org/10.1016/j.scitotenv.2020.141645
    Subject
    Analytical chemistry
    Carbon to nitrogen ratio
    Microbial biomass carbon
    Microbial biomass nitrogen
    Mineralization rate
    Nutrient balance
    Publication URI
    http://hdl.handle.net/10072/400526
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander