Numerical simulation and design of stainless steel hollow flange beams under shear
Author(s)
Dissanayake, DMMP
Zhou, C
Poologanathan, K
Gunalan, S
Tsavdaridis, KD
Guss, J
Griffith University Author(s)
Year published
2021
Metadata
Show full item recordAbstract
Stainless steel offers a range of benefits over conventional carbon steel in structural applications. This paper presents the detailed numerical modelling of shear response of cold-formed stainless steel hollow flange sections using finite element software package, Abaqus. The effect of geometric parameters such as section height and section thickness, and the influence of different steel grades were investigated following the validation of finite element models. From numerical results, the formation of diagonal tension fields can be clearly observed in the webs of rectangular hollow flange sections while more even distribution ...
View more >Stainless steel offers a range of benefits over conventional carbon steel in structural applications. This paper presents the detailed numerical modelling of shear response of cold-formed stainless steel hollow flange sections using finite element software package, Abaqus. The effect of geometric parameters such as section height and section thickness, and the influence of different steel grades were investigated following the validation of finite element models. From numerical results, the formation of diagonal tension fields can be clearly observed in the webs of rectangular hollow flange sections while more even distribution of the stresses in the webs is seen in triangular hollow flange sections. Further, a plastic hinge type mechanism is formed in triangular flanges at the post-failure region. The evaluation of Eurocode 3 and the direct strength method shear design provisions for stainless steel hollow flange beams is found to be significantly conservative. Therefore, modified provisions were proposed and the comparison of those with finite element results confirmed the accurate and consistent shear resistance predictions over the codified provisions.
View less >
View more >Stainless steel offers a range of benefits over conventional carbon steel in structural applications. This paper presents the detailed numerical modelling of shear response of cold-formed stainless steel hollow flange sections using finite element software package, Abaqus. The effect of geometric parameters such as section height and section thickness, and the influence of different steel grades were investigated following the validation of finite element models. From numerical results, the formation of diagonal tension fields can be clearly observed in the webs of rectangular hollow flange sections while more even distribution of the stresses in the webs is seen in triangular hollow flange sections. Further, a plastic hinge type mechanism is formed in triangular flanges at the post-failure region. The evaluation of Eurocode 3 and the direct strength method shear design provisions for stainless steel hollow flange beams is found to be significantly conservative. Therefore, modified provisions were proposed and the comparison of those with finite element results confirmed the accurate and consistent shear resistance predictions over the codified provisions.
View less >
Journal Title
Journal of Constructional Steel Research
Volume
176
Subject
Civil engineering
Other engineering
Building