Broadly active zinc finger protein-guided transcriptional activation of HIV-1

View/ Open
File version
Version of Record (VoR)
Author(s)
Scott, TA
O'Meally, D
Grepo, NA
Soemardy, C
Lazar, DC
Zheng, Y
Weinberg, MS
Planelles, V
Morris, KV
Griffith University Author(s)
Year published
2021
Metadata
Show full item recordAbstract
Human immunodeficiency virus type 1 (HIV-1) causes a persistent viral infection resulting in the demise of immune regulatory cells. Clearance of HIV-1 infection results in integration of proviral DNA into the genome of host cells, which provides a means for evasion and long-term persistence. A therapeutic compound that specifically targets and sustainably activates a latent HIV-1 provirus could be transformative and is the goal for the “shock-and-kill” approach to a functional cure for HIV-1. Substantial progress has been made toward the development of recombinant proteins that target specific genomic loci for gene activation, ...
View more >Human immunodeficiency virus type 1 (HIV-1) causes a persistent viral infection resulting in the demise of immune regulatory cells. Clearance of HIV-1 infection results in integration of proviral DNA into the genome of host cells, which provides a means for evasion and long-term persistence. A therapeutic compound that specifically targets and sustainably activates a latent HIV-1 provirus could be transformative and is the goal for the “shock-and-kill” approach to a functional cure for HIV-1. Substantial progress has been made toward the development of recombinant proteins that target specific genomic loci for gene activation, repression, or inactivation by directed mutations. However, most of these modalities are too large or too complex for efficient therapeutic application. We describe here the development and testing of a novel recombinant zinc finger protein transactivator, ZFP-362-VPR, which specifically and potently enhances proviral HIV-1 transcription both in established latency models and activity across different viral clades. Additionally, ZFP-362-VPR-activated HIV-1 reporter gene expression in a well-established primary human CD4+ T cell latency model and off-target pathways were determined by transcriptome analyses. This study provides clear proof of concept for the application of a novel, therapeutically relevant, protein transactivator to purge cellular reservoirs of HIV-1.
View less >
View more >Human immunodeficiency virus type 1 (HIV-1) causes a persistent viral infection resulting in the demise of immune regulatory cells. Clearance of HIV-1 infection results in integration of proviral DNA into the genome of host cells, which provides a means for evasion and long-term persistence. A therapeutic compound that specifically targets and sustainably activates a latent HIV-1 provirus could be transformative and is the goal for the “shock-and-kill” approach to a functional cure for HIV-1. Substantial progress has been made toward the development of recombinant proteins that target specific genomic loci for gene activation, repression, or inactivation by directed mutations. However, most of these modalities are too large or too complex for efficient therapeutic application. We describe here the development and testing of a novel recombinant zinc finger protein transactivator, ZFP-362-VPR, which specifically and potently enhances proviral HIV-1 transcription both in established latency models and activity across different viral clades. Additionally, ZFP-362-VPR-activated HIV-1 reporter gene expression in a well-established primary human CD4+ T cell latency model and off-target pathways were determined by transcriptome analyses. This study provides clear proof of concept for the application of a novel, therapeutically relevant, protein transactivator to purge cellular reservoirs of HIV-1.
View less >
Journal Title
Molecular Therapy: Methods and Clinical Development
Volume
20
Copyright Statement
© 2020 The Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Subject
Clinical sciences