• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Direct and indirect effects of heatwaves on a coral reef fishery

    Thumbnail
    View/Open
    Brown457012-Accepted.pdf (1.212Mb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Brown, Christopher J
    Mellin, Camille
    Edgar, Graham J
    Campbell, Max D
    Stuart-Smith, Rick D
    Griffith University Author(s)
    Brown, Chris J.
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    Marine heatwaves are increasing in frequency and intensity, and indirectly impacting coral reef fisheries through bleaching-induced degradation of live coral habitats. Marine heatwaves also affect fish metabolism and catchability, but such direct effects of elevated temperatures on reef fisheries are largely unknown. We investigated direct and indirect effects of the devastating 2016 marine heatwave on the largest reef fishery operating along the Great Barrier Reef (GBR). We used a combination of fishery-independent underwater census data on coral trout biomass (Plectropomus and Variola spp.) and catch-per-unit-effort (CPUE) ...
    View more >
    Marine heatwaves are increasing in frequency and intensity, and indirectly impacting coral reef fisheries through bleaching-induced degradation of live coral habitats. Marine heatwaves also affect fish metabolism and catchability, but such direct effects of elevated temperatures on reef fisheries are largely unknown. We investigated direct and indirect effects of the devastating 2016 marine heatwave on the largest reef fishery operating along the Great Barrier Reef (GBR). We used a combination of fishery-independent underwater census data on coral trout biomass (Plectropomus and Variola spp.) and catch-per-unit-effort (CPUE) data from the commercial fishery to evaluate changes in the fishery resulting from the 2016 heatwave. The heatwave caused widespread, yet locally patchy, declines in coral cover, but we observed little effect of local coral loss on coral trout biomass. Instead, a pattern of decreasing biomass at northern sites and stable or increasing biomass at southern sites suggested a direct response of populations to the heatwave. Analysis of the fishery-independent data and CPUE found that in-water coral trout biomass estimates were positively related to CPUE, and that coral trout catch rates increased with warmer temperatures. Temperature effects on catch rates were consistent with the thermal affinities of the multiple species contributing to this fishery. Scaling-up the effect of temperature on coral trout catch rates across the region suggests that GBR-wide catches were 18% higher for a given level of effort during the heatwave year relative to catch rates under the mean temperatures in the preceding 6 years. These results highlight a potentially large effect of heatwaves on catch rates of reef fishes, independent of changes in reef habitats, that can add substantial uncertainty to estimates of stock trends inferred from fishery-dependent (CPUE) data. Overestimation of CPUE could initiate declines in reef fisheries that are currently fully exploited, and threaten sustainable management of reef stocks.
    View less >
    Journal Title
    Global Change Biology
    DOI
    https://doi.org/10.1111/gcb.15472
    Copyright Statement
    © 2020 John Wiley & Sons Ltd. This is the peer reviewed version of the following article: Direct and indirect effects of heatwaves on a coral reef fishery, Global Change Biology, 2020, which has been published in final form at https://doi.org/10.1111/gcb.15472. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving (http://olabout.wiley.com/WileyCDA/Section/id-828039.html)
    Note
    This publication has been entered as an advanced online version in Griffith Research Online.
    Subject
    Environmental sciences
    Biological sciences
    Science & Technology
    Life Sciences & Biomedicine
    Biodiversity Conservation
    Ecology
    Publication URI
    http://hdl.handle.net/10072/400600
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander