• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Design Strategies of Safe Electrolytes for Preventing Thermal Runaway in Lithium Ion Batteries

    Author(s)
    Tian, X
    Yi, Y
    Fang, B
    Yang, P
    Wang, T
    Liu, P
    Qu, L
    Li, M
    Zhang, S
    Griffith University Author(s)
    Zhang, Shanqing
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    The safety problems of lithium ion batteries (LIBs) have been the main obstacles that hinder their broad applications in portable electronic devices, electric vehicles, and energy storage. Such problems originate from flammable solvent-containing liquid electrolytes that could be easily oxidized upon excessive heat, leading to further heat accumulation and, subsequently, thermal runaway. The design strategies of a safe electrolyte could control the flammability and volatility of the liquid electrolyte, might prevent the thermal runaway, and ultimately ensure the risk-free and fire-free operation of LIBs. This work is to ...
    View more >
    The safety problems of lithium ion batteries (LIBs) have been the main obstacles that hinder their broad applications in portable electronic devices, electric vehicles, and energy storage. Such problems originate from flammable solvent-containing liquid electrolytes that could be easily oxidized upon excessive heat, leading to further heat accumulation and, subsequently, thermal runaway. The design strategies of a safe electrolyte could control the flammability and volatility of the liquid electrolyte, might prevent the thermal runaway, and ultimately ensure the risk-free and fire-free operation of LIBs. This work is to explore the mechanism of thermal runaway and review the state-of-the-art of the designs of a safe electrolyte for LIBs, including the additions of flame retardant additives, overcharge additives, and stable lithium salts and the adoption of solid-state electrolytes, ionic liquid electrolytes, and thermosensitive electrolytes. The features, advantages, and drawbacks of these strategies are systematically summarized, compared, and discussed, while the development direction of a safer electrolyte for future LIBs is proposed in the end.
    View less >
    Journal Title
    Chemistry of Materials
    Volume
    32
    Issue
    23
    DOI
    https://doi.org/10.1021/acs.chemmater.0c02428
    Subject
    Chemical sciences
    Engineering
    Publication URI
    http://hdl.handle.net/10072/400609
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander