• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • In situ biochar capping is feasible to control ammonia nitrogen release from sediments evaluated by DGT

    Author(s)
    Zhu, Yaoyao
    Shan, Baoqing
    Huang, Jianyin
    Teasdale, Peter R
    Tang, Wenzhong
    Griffith University Author(s)
    Huang, Jianyin
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    Evaluation of in situ capping with biochar (BC) to control ammonia nitrogen (NH4+-N) release from the sediments of Baiyangdian Lake, the largest freshwater lake in northern China, was performed after 10 months of field and mesocosm experiments. The concentration of NH4+-N in pore water and its resupply from native sediments and capped sediments were determined using the technique of diffusive equilibrium in thin films (DET) and the technique of diffusive gradients in thin films with CMI-7000 cation ion exchange membrane (CMI-DGT) binding layer. The results showed a low concentration of NH4+-N in pore water and a low resupply ...
    View more >
    Evaluation of in situ capping with biochar (BC) to control ammonia nitrogen (NH4+-N) release from the sediments of Baiyangdian Lake, the largest freshwater lake in northern China, was performed after 10 months of field and mesocosm experiments. The concentration of NH4+-N in pore water and its resupply from native sediments and capped sediments were determined using the technique of diffusive equilibrium in thin films (DET) and the technique of diffusive gradients in thin films with CMI-7000 cation ion exchange membrane (CMI-DGT) binding layer. The results showed a low concentration of NH4+-N in pore water and a low resupply from the sediment or capping materials after BC capping. The concentration of bioavailable NH4+-N measured by DGT of the top 4 cm layer in BC capping layer was only 12.8%−29.2% of the native sediments. Flux DET-NH4+-N, could be reduced from 12.74 to 3.44 mg·m−2·d−1 and Flux DGT-NH4+-N was further reduced from 13.38 to 1.59 mg·m−2·d−1. The calculated concentration gradient at the sediment-water interface following the capping treatment was lower than the control. These results implied that BC capping reduced the release of NH4+-N from the sediments. The low resupply from the sediments was further demonstrated by the smaller ratio of CDGT to CDET (R) in the BC capping layer, which their average values were 0.48, 0.59, 0.68 in the BC capping layer, BC/soil layer and native sediments, respectively. The physical, chemical and microbiological effects were attributed to inhibit the NH4+-N release from sediments by the BC capping.
    View less >
    Journal Title
    Chemical Engineering Journal
    Volume
    374
    DOI
    https://doi.org/10.1016/j.cej.2019.06.007
    Subject
    Chemical engineering
    Civil engineering
    Environmental engineering
    Science & Technology
    Engineering
    Publication URI
    http://hdl.handle.net/10072/400662
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander