• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Adaptive Transfer Learning of Cross-Spatiotemporal Canonical Correlation Analysis for Plant-Wide Process Monitoring

    Author(s)
    Cheng, H
    Liu, Y
    Huang, D
    Pan, Y
    Wang, Q
    Griffith University Author(s)
    Wang, Qilin
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    Multivariate statistical methods have gained significant popularity in past decades. However, process dynamics and insufficient training data usually result in degradation or even failure of a trained model. To deal with these problems, this paper proposes a novel process monitoring method, called cross-spatiotemporal adaptive boosting transfer learning (CS-AdBoostTrLM). Different from the standard methods, CS-AdBoostTrLM has the following advantages: first, source domain (SD) data, which are discarded by the factory, can be re-enabled to alleviate the issue of insufficient training data. Second, cross-spatiotemporal canonical ...
    View more >
    Multivariate statistical methods have gained significant popularity in past decades. However, process dynamics and insufficient training data usually result in degradation or even failure of a trained model. To deal with these problems, this paper proposes a novel process monitoring method, called cross-spatiotemporal adaptive boosting transfer learning (CS-AdBoostTrLM). Different from the standard methods, CS-AdBoostTrLM has the following advantages: first, source domain (SD) data, which are discarded by the factory, can be re-enabled to alleviate the issue of insufficient training data. Second, cross-spatiotemporal canonical correlation analysis is proposed to achieve the domain adaptation between the SD data and target domain data, so as to overcome the negative transfer. Third, the particle swarm optimization algorithm is used to optimize the local detection model, in such a way that the integrated detection model can converge to the optimality globally. Finally, the data from the wastewater treatment plant and chemical plant are analyzed to demonstrate the effectiveness of the proposed method.
    View less >
    Journal Title
    Industrial and Engineering Chemistry Research
    Volume
    59
    Issue
    49
    DOI
    https://doi.org/10.1021/acs.iecr.0c04885
    Subject
    Chemical sciences
    Engineering
    Publication URI
    http://hdl.handle.net/10072/400714
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander